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The course follows the chapter called "ÉTUDE PROJECTIVE DE LA DROITE" in
the book "Leçons sur LA THÉORIE DES ESPACES A CONNEXION PROJECTIVE" by
Elie Cartan. In order to understand the main concepts we begin by recalling the general
geometrical setting by a short description of the projecive geometries.
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Thème I

Some Aspects of Projective Geometry





Chapitre 1

Projective spaces

§ 1. General definition of a projective space
§ 2. Real affine line and real projective line
§ 3. Complex affine line and complex projective line

§ 1. General definition of a projective space

1.1 Intrinsic definition

Defintion. Let V be a linear space (or vector space) over a field K. The set of subspaces
of dimension 1 of V is called the projective space derived from V and denoted PV . The
elements of PV are called points.

Remark 1. If V D f0g, then PV D ;. We suppose from now on that V contains vectors
which are not equal to 0.

Remark 2. If v 2 V and v ¤ 0, then the set Kv D f�v j � 2 Kg belongs to PV .
Conversely, any point M in PV may be written as Kv for some v in V X f0g.

Proposition. Let f be a linear bijective map from a linear space V onto itself. The map f
induces a map ef defined by ef .Kv/ D Kf .v/

Proof. Let M be a point in PV . We choose any vector v in M different from 0. Thenef .M/ is the point M 0 D Kf .v/. This defines a map if and only if the point M 0 obtained is
independent of the choice of v in M X f0g. To prove that, let v1 be any vector in M X f0g ;
we have

v1 D �v with � ¤ 0

and thus since f is linear f .v1/ D �f .v/. Then Kv D Kv1 and Kf .v/ D Kf .v1/. �

Definition. The maps ef induced by linear bijective maps f are called automorphisms of
PV , projective linear transformation of PV , projective transformation of PV or simply
homography.
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1.2 Relation between projective space and affine space

We consider a linear space V of finite dimension nC1. The projective space PV is said
to be of dimension n.

Let ' be a linear map from V onto K. The kernel W of ' is a linear subspace of V of
dimension n :

W D '�1.0/
For each � 2 K X f0g, the subset W� of V defined by

W� D '
�1.�/

is called an affine subspace of V . Note thatW� \W D ¿ andW� \W�0 D ¿ for � ¤ �0.
The affine subspaces W� are said parallel to each other and parallel to W .

Now look at a point M in PV ; either M � W and M 2 PW , or there is a vector v in
M such that '.v/ ¤ 0. In this second case there is a unique vector m in the affine subspace
W� such thatM D Km. Let us identify the projective pointM in PV XW with the "point"
m in the affine space W� such that M D Km. Thus

PV D W� [ PW .�/

where the union is disjoint.
Conclusion : a projective space of dimension n is the disjoint union of an affine space of

dimension n and a projective subspace PW of dimension n � 1. The elements of PW are
said to be at infinity.

Let us look at the formula .�/ for small values of n.

n D 0. The space V is a line.

The linear space V is of dimension 1. The subspace of dimension 0 is the set containing
only the null vector also denoted 0, thus W D f0g and PW D ¿. The only linear subspace
of V of dimension 1, is V itself. Thus

PV D fV g [¿

PV is a set containing only one point.

n D 1. The space V is a plane.

The linear space V is of dimension 2. For any subspaceW of dimension 1 the projective
subspace PW contains only one element, thus W D Km and PW D fM g. Thus

PV D affine line [ one point

PV is a projective line.

n D 2. The space V is a 3-dimensional linear space.

The linear space V is of dimension 3. The projective space PV is of dimension 2 and
called a projective plane. For any subspace W of dimension 1 the projective subspace PW
is a projective line. Thus

projective plane D affine plane [ projective line



§ 1. GENERAL DEFINITION OF A PROJECTIVE SPACE 5

1.3 Use of coordinates

Definition. We consider a linear space V of finite dimension nC 1. Let .e1; : : : ; enC1/ be
a basis of V . Let M be a point belonging to PV . We call homogeneous coordinates of M
any sequence of length nC 1 of elements of K .x1; : : : ; xnC1/ such that

x1e1 C � � � C xnC1enC1 2 V X f0g

Proposition. Two sequences of length nC1 of elements of K, .x1; : : : ; xnC1/ and .y1; : : : ; ynC1/
are homogeneous coordinates of a same point M in PV if and only if there is an element
� 2 K X f0g such that 8<: y1 D �x1

: : : : : : : : :

ynC1 D �xnC1
Remark. A point M in PV has n C 1 homogeneous coordinates, but since they are defi-
ned up to a multiplicative constant, the point depends only on n parameters. Therefore it is
natural to say that PV is of dimension n. If one tries to use just n numbers, one gets the
coordinates of points in an affine plane. Thus some points (the points "at infinity") are for-
gotten. But sometimes it is nevertheless convenient to use such inhomogeneous coordinates.

Definition. Let W be the subspace of V with equation

xnC1 D 0

and W1 the affine subset with equation

xnC1 D 1

For any point M in PV X PW , we call inhomogeneous coordinates of M the sequence
.z1; : : : ; zn/ such that .z1; : : : ; zn; 1/ are homogeneous coordinates of M .

Proposition. Let .x1; : : : ; xnC1/ be homogeneous coordinates of a point M in PV . We
suppose that M … W , that is xnC1 ¤ 0. Then the inhomogeneous coordinates of M are
given by 8<:

z1 D
x1
xnC1

: : : : : : : : :

zn D
xn
xnC1

Description of the homographies in coordinates

Let f be a bijective linear map of V onto itself. Given the basis .e1; : : : ; enC1/, the map
is described by a regular square matrix A of order nC 1 :

A D

26664
a11 a12 : : : a1;nC1
a21 a22 : : : a2;nC1
:::

:::
: : :

:::

anC1;1 anC1;2 : : : anC1;nC1

37775 with detA ¤ 0
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The homography ef is described by8̂̂<̂
:̂

x01 D a11x1 C a12x2 C : : :C a1;nC1xnC1
: : : : : : : : :

x0n D an;1x1 C an;2x2 C : : :C an;nC1xnC1
x0nC1 D anC1;1x1 C anC1;2x2 C : : :C anC1;nC1xnC1

or in inhomogeneous coordinates8̂<̂
:

z01 D
a11z1Ca12z2C:::Ca1;nC1

anC1;1z1CanC1;2z2C:::CanC1;nC1
: : : : : : : : :

z0n D
an;1z1Can;2z2C:::Can;nC1

anC1;1z1CanC1;2z2C:::CanC1;nC1

Two matricesA and B describe the same homography if there is an element � in KXf0g
such that

B D �A

n D 1 Homographies of the projective line

When n D 1 the formulae above become�
x0 D ax C by

y0 D cx C dy
with ad � bc ¤ 0

and

z0 D
az C b

cz C d
with ad � bc ¤ 0

§ 2. Real affine line and real projective line

2.1 Directed distances and division ratio on a real affine line

A real affine line is the usual straight line without any unit or origin. Just a line :
——————————————————————————-

To describe points on such a line we need an origin, a distance and an orientation. In
practice what we need is a frame which is a couple of distinct points .O; I /. The abscissa
x of a point m on the line is positive if m and I are on the same side of O , negative if m
and I are on the two different rays with origin O . The absolute value is the quotient of the
distance Om from O to m divided by the distance OI from O to I . We denote

xm D Om

O I m

0 1 x

where the frame .O; I / is not mentioned but is implicit.
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Given two points a and b we define the directed distance ab by

ab D xb � xa

O I a b

0 1 xa xb
ab D 2

If we change the frame .O; I /, the directed distances will become different.

Change of frame on an affine line

Let .O 0; I 0/ be another frame of the same real affine line. Let xO0 and xI 0 be the abs-
cissae of the points O 0 and I 0 in the old frame .O; I /. The abscissa of a point a in this new
frame can be written

x0a D
O 0a
O 0I 0

D
xa � xO0

xI 0 � xO0
D ˛xa C ˇ where ˛ D

1

xI 0 � xO0
and ˇ D �

xO0

xI 0 � xO0

Definition and Proposition. Let a, b and c be three points on a line. We call division ratio
of the directed distances from c to a and b the number

ca

cb

This number is independent of the choice of the frame.

Proof.

ca

cb

ˇ̌̌̌
dans le repère .O0;I 0/

D
x0a � x0c
x0
b
� x0c

D
.˛xa C ˇ/ � .˛xc C ˇ/

.˛xb C ˇ/ � .˛xc C ˇ/
D
xa � xc

xb � xc
D
ca

cb

ˇ̌̌̌
dans le repère .O;I/

Example. The point c is the midpoint of the segment ab iff

ca

cb
D �1

Remark. Let x D ca

cb
, then

cb

ca
D
1

x
I
ba

bc
D 1 � x I

bc

ba
D

1

1 � x
I
ac

ab
D

x

x � 1
I
ab

ac
D 1 �

1

x

2.2 Homographies of the real projective line

Recall that the real projective line ` may be described by a real affine line to which is
added one point called point at infinity. The abscissa of the point at infinity is denoted1.
Thus ` is in bijection with R [ f1g.
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Definition

The automorphism of ` are the homographies described by the bijective maps
f W R [ f1g �! R [ f1g such that ad � bc ¤ 0 and(

if z 2 R then f .z/ D azCb
czCd

if z D1 then f .z/ D a
c

if c ¤ 0 and and f .z/ D1 if c D 0

Classification of real homographies

A fixed point of a homography f is an element z of R [ f1g such that z D f .z/.
Let f .z/ D azCb

czCd , with c ¤ 0, then z is a fixed point iff

cz2 C .d � a/z � b D 0

It is an equation of degree 2 with � D .d � a/2 C 4bc : the number of solutions is 2 when
� > 0, 1 when � D 0 and 0 when � < 0.

Notice that if c D 0, then f .1/ D 1 ; thus1 is a fixed point. The equation for fixed
point becomes

.d � a/z � b D 0

Either d ¤ a and we have one fixed point other than1, or d D a and then f is a translation

f .z/ D z C
b

d

This equation has no solution in R, but we can think of1 as a solution. The homography
f has then 1 fixed point and we may view1 as a double solution.

Definition. A homography of R[f1g is called hyperbolic if it has 2 fixed points, parabolic
if it has 1 fixed point and elliptic if it has 0 fixed point.

O

Hyperbolic homography

z 7�! 3zC2
zC2

Fixed points : �1 and 2
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O

Hyperbolic homography

z 7�! 2z

Fixed points : 0 and1

O

Parabolic homography

z 7�! 3z�1
zC1

Fixed point : 1 (double)
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O

Parabolic homography

z 7�! z C 2

Fixed point :1 (double)

O

Elliptic homography

z 7�! 3z�2
zC1

Fixed point : none
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2.3 cross-ratios

Cross-ratio of 4 elements of R [ f1g

Definition. Let z1, z2, z3 and z4 be four elements of R [ f1g, the cross-ratio of these four
(generalized) numbers denoted by .z1; z2I z3; z4/ is given by

.z1; z2I z3; z4/ D
z3 � z1

z4 � z1

z4 � z2

z3 � z2

Remark 1. We can write the cross-ratio as a ratio of ratios like

.z1; z2I z3; z4/ D

z3�z1
z4�z1
z3�z2
z4�z2

Therefore the cross-ratio is also called "birapport" in french. Other names for the cross-ratio
are "double ratio" and "anharmonic ratio".

Remark 2. If one of the elements is1 you simplify with the two factors containing1 :

.1; z2I z3; z4/ D
z4 � z2

z3 � z2
; .z1;1I z3; z4/ D

z3 � z1

z4 � z1
; .z1; z2I1; z4/ D

z4 � z2

z4 � z1
and .z1; z2I z3;1/ D

z3 � z1

z3 � z2

Cross-ratio of 4 points on a line

Definition. Let ` be a projective line. Choose one point m1 in ` and call it point at infinity
and let � be the affine line ` X fm1g. Choose a frame .O; I / on �. We call cross-ratio of
four points a, b, c and d on � the cross-ratio of the abscissae :

.a; bI c; d/ WD .za; zbI zc ; zd / D
zc � za

zd � za

zd � zb

zc � zb

We extend the definition to the cases when one of the four points a, b, c or d is the point
m1 by giving to the point m1 the abscissa1.

Theorem. A bijection f of R [ f1g preserves the cross-ratios if and only if f is a homo-
graphy.

Proof. Let f be such that for all z

f .z/ D
˛z C ˇ


z C ı
where ˛ı � ˇ
 ¤ 0

and let us compute

.f .za/; f .zb/If .zc/; f .zd // D
˛zcCˇ

zcCı �˛zaCˇ


zaCı
˛zdCˇ

zdCı �˛zaCˇ


zaCı

˛zdCˇ

zdCı �

˛zbCˇ

zbCı

˛zcCˇ

zcCı �

˛zbCˇ

zbCı

D
.˛zcCˇ/.
zaCı/�.˛zaCˇ/.
zcCı/
.˛zdCˇ/.
zaCı/�.˛zaCˇ/.
zdCı/

.˛zdCˇ/.
zbCı/�.˛zbCˇ/.
zdCı/
.˛zcCˇ/.
zbCı/�.˛zbCˇ/.
zcCı/

D
.˛ı�ˇ
/.zc�za/

.˛zdCˇ/.
zaCı/�.˛zaCˇ/.
zdCı/
.˛zdCˇ/.
zbCı/�.˛zbCˇ/.
zdCı/
.˛zcCˇ/.
zbCı/�.˛zbCˇ/.
zcCı/

D
zc�za
zd�za

zd�zb
zc�zb

D .za; zbI zc ; zd /
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Conversely, let f be a bijection which preserves cross-ratios. Once we have the three
distinct images f .za/, f .zb/ and f .zc/ of three distinct numbers za, zb and zc , we have for
any z

.f .z/; f .za/If .zb/; f .zc// D .z; zaI zb; zc/

expressed also as
f .zb/ � f .z/

f .zd / � f .z/
ˆ D

zb � z

zc � z
'

where ˆ D f .zd /�f .za/
f .zb/�f .za/ and ' D zd�za

zb�za are constants. Thus :

.zc � z/.f .zb/ � f .z//ˆ D .zb � z/'.f .zd / � f .z//

that is :

Œ'.zb � z/ �ˆ.zc � z/�f .z/ D 'f .zd /.zb � z/ � f̂ .zb/.zc � z/

and finally :

f .z/ D
Œ f̂ .zb/ � 'f .zd /�z C Œ'zbf .zd / �ˆzcf .zb/�

Œˆ � '�z C Œ'zb �ˆzc �

Thus f is a homography. �

2.4 Why is projective geometry called projective ?

Let E be the usual 3-dimensional space, let P be any plane and S any point which
doesn’t belong to P . The central projection of E on P with center S is the map that as-
sociates to any point M in S the intersection m of the line CM and the plane P . This
definition is not so good since there are points in E which do not have any image through
this projection. To avoid this difficulty the notion of points and lines at infinity were intro-
duced...

Now we can restrict ourselves and consider projection with center S from one plane P
on an other plane P 0 (of course S should not belong to P nor to P 0). It is clear that the
image of a line will be a line and also that intersections will become intersections.

What else is preserved ?

A

B

C

D

P

S

D0

C 0

A0 P 0

B0
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Answer : cross-ratios. But to look at that property it is enough to look at central projec-
tions in a plane of one line onto an other line.

2.5 Real projective plane

The real projective plane geometry is the study of figures and properties preserved by
central (inclusive parallel) projection of a plane on an other. Such projections preserve lines
and cross-ratios of aligned points. But to get bijections one adds to each plane P not only
one point at infinity but a line at infinity. The points of this line are the directions of the lines
in P (the direction of a line may be defined as the equivalence class relative to parallelism ;
thus the direction of a line ` is the set of all the lines parallel to `). Let us denote1P the line
at infinity of the plane P . Thus two parallel and distinct lines ` and `0 intersect in one point
at infinity since they have the same direction. We add this point at infinity to the line ` ; but
notice : there is only one line at infinity on a line `. It is the same point "at both ends" : the
line is like a circle !

If d is a line we get the associated projective line � by adding a point at infinity which
we denote1�. Thus

� D d [ f1�g and f1�g D � \1P

Definition. Let � and �0 be two projective lines and S a point in the projective plane P .
We suppose that S does not belong to � nor to �0. Let Q be the intersection of the parallel
to�0 with�, let R0 be the intersection of the parallel to� with�0 (if� and�0 are parallel
then Q D R0 D 1� D 1�

0). The central projection with center S from � on �0 is
defined as follows :

� �! �0;M 7�!M 0 such that

8̂<̂
:

if M ¤1� and M ¤ Q then M 0 D �0 \ SM
if M D1� then M 0 D R0

if M D Q then M 0 D1�0 :

S

Q
M

M 0

R0

�

�0

By the introduction of the points at infinity our projection is a bijection.

Theorem. Central projections preserve cross-ratios.
Proof. Let S be a point, � and �0 two lines which do not contain S . Let A, B , C and D be
four points belonging to�. The line�0 intersects SA in A0, SB in B 0, SC in C 0 and SD in
D0. We want to show

.A;BIC;D/ D .A0; B 0IC 0;D0/ (1)

Let us draw the parallels to the line SD going through C and C 0. These lines intersect
SA in a and a0 and SB in b and b0.
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S ��0

A
B

C

D

a b

a0 b0

A0

B 0

C 0

D0

Since the triangles ACa and ADS are similar, we have
AC

AD
D
aC

SD
. Similarly since

the triangles BCb and BDS are similar, we have
BD

BC
D
SD

bC
. From that we get

.A;BIC;D/ D
AC

AD

BD

BC
D
aC

SD

SD

bC
D
aC

bC
(2)

In the same way we show

.A0; B 0IC 0;D0/ D
a0C 0

b0C 0
(3)

Consider the homothety (or homothecy or homogeneous dilation or homothetic trans-
formation) with center S which transforms C into C 0. It transforms a into a0 and b into b0.
Thus :

aC

bC
D
a0C 0

b0C 0
(4)

From (2), (3) and (4) we get (1).�
As a consequence of this theorem, we see that if we cut a pencil of four concurrent lines1

by a line � the cross-ratio of the four points on � is independent of the choice of �. This
cross-ratio can then be thought of as belonging to the pencil.

Definition. Let �a, �b , �c and �d be four lines going through a common point S . The
cross-ratio of these four lines in that order denoted .�a; �bI�c ; �d / is equal to the number
.A;BIC;D/ where A, B , C and D are the intersection points of any line � with the four
lines �a, �b , �c and �d .

Remark 1. This shows why it is possible to define the cross-ratio of four points on a pro-
jective line : these four points are in fact four coplanar lines through the origin O of 2-
dimensional linear space.

Remark 2. To define the homographies on a line�, one may proceed in the following way :
make a central projection f1 from � onto an other line �1 and then a central projection f2
from �1 onto a line �2 and so on. After n such projections make a central projection

1Lines are concurrent if they have a common point ; a pencil of lines is a set of concurrent lines.
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fnC1 from �n onto �. The map f D fnC1 ı : : : f2 ı f1 W � �! � can be defined
as a "homographic bijection" of the projective line � on itself. Since the cross-ratios are
preserved at each central projection, f preserves cross-ratios and because of the theorem
above f is a map that can be described by

� �! �; z 7�! f .z/ D
az C b

cz C d

There is still a question : do we get all possible homographies in this way ? We can
simplify the question if we recall that a homography is characterized by the images of any
three distinct points. Thus the question may be put as follow : let A, B and C be three
distinct points of a projective line � in a projective plane P and let A0, B 0 and C 0 be three
distinct points of the projective line �. Can we find central projections f1 W � �! �1,
f2 W �1 �! �2 and f3 W �2 �! � such that the images of A, B and C by f2 ı f1 are
respectively A0, B 0 and C 0 ? The answer is yes, but we leave it as an exercise !

2.6 Harmonic division

The harmonic division is the generalization to projective geometry of midpoint in affine
geometry.

Definition. Four points A, B , A0 and B 0 in that order constitute a harmonic division if their
cross-ratio is equal to �1.

A, B , A0 and B 0 constitute a harmonic division” .A;B;A0; B 0/ D �1”
A0B
A0A

D �
B 0B
B 0A

A I BA0 B0

Equivalent formulations.
� .A;BIA0; B 0/ D �1
� .A;BIB 0; A0/ D �1
� .A0; B 0IA;B/ D �1
. . .
� .aC b/.a0 C b0/ D 2.ab C a0b0/
� IA2 D IB2 D IA0 IB 0, where I is the midpoint of the segment AB
� AB est la moyenne harmonique de AA0 et de AB 0, soit

2

AB
D

1

AA0
C

1

AB 0
Harmonic pencil of four lines. Four conccurrent lines form a harmonic pencil if the cross-
ratio of these four lines is �1.

Proposition. A pencil of four concurrent lines a, b, a0 and b0 is harmonic if and only if a
line d parallel to b0 intersects a, b and a0 in points A, B and A0 such that A0 is the middle
of the segment AB .
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S

A B

B1

A1

A2

B2

b

a

a0

A0

A0
1

A0
2

B 0
1 B 0

2
b0

Proof. When the point B 0 is at infinity the cross-ratio becomes a ratio of directed distances

.A;BIA0;1/ D
AA0

A1

B1

BA0
D
AA0

BA0
and this ratio is equal to �1 if and only if A0 is the midpoint of the segment AB .�
Examples of harmonic pencils.

– Let A be a vertex of a triangle ABC . Two sides AB and AC , the median AA0 issued
from A and the parallel through A to the side BC is a harmonic pencil.

– The bisectors and the sides of an angle constitute a harmonic pencil.

A

B CA

·à BC

D2

D1

0

– Let A be a vertex in a complete quadrilateral (that is four lines such that no three lines
are concurrent). Let I be the intersection of the two other diagonals. The pencil of
four lines formed by the two sides through A, the diagonal through A and the line AI
is harmonic.

diag
onale

A

I

!

– Apollonius’ circle. Let A and B be two distinct points and let k be a positive number.
The set of points M such that MA

MB
D k is the circle with diameter A0B 0, where A0

and B 0 are the points of the line AB which divide the segment AB in the ratio k.
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Since the four pointsA,B ,A0 andB 0 form harmonic division, the pencil .MA;MBIMA0MB 0/
is harmonic.

A BA0 B0

M

Remark 1. What happens when k D 1 ? The point A0 becomes the middle of the
segment AB , B 0 the point at infinity, MA0 the bisector of the segment AB and MB 0
is the parallel to AB through M . The « circle » is then the line bisecting the segment
AB .

Exercise. Let M , N , A, B , C et D be six points on a conic. Show that

.MA;MBIMC;MD/ D .NA;NBINC;ND/

§ 3. Complex affine line and complex projective line

3.1 Division ratio on a complex affine line

A complex affine line is in bijection with C. There are plenty of such bijections. A
bijection is fixed as soon as we have the images of two distinct points. Usually the most
common choice is to choose a point associated to the number 0 and a point I associated to
the number 1. The couple .O; I / is called a frame of the complex line. We denote by zM
the complex number associated with the point M with respect to a given frame. Notice that
the complex line looks like a plane since it is in bijection with R2 !

If we have three points A, B and C , we may compute the division ratio

ztriangle ABC D
zC � zA

zB � zA

Let T be a point such that zT D ztriangle ABC . Then the triangles ABC and OIT are
similar. Thus every complex number characterise a class of similar triangles. Notice that the
three points are aligned if ztriangle ABC 2 R.

If we have three distinct points A, B and C , they are the vertices of 6 distinct triangles.
If z is the division ratio associated to one, then the division ratios associated to the 5 others
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are
1

z
I 1 � z I

1

1 � z
I

z

z � 1
I 1 �

1

z

We recognize once again the group of permutations of three objects S3.

3.2 Homographies of a complex projective line

The complex projective line may be obtained from the affine line by adding ONE POINT
AT INFINITY denoted1 (remember that we add a complete projective line to the real affine
plane to get the real projective plane). Thus the complex projective line has the shape of the
Riemann sphere. Let us suppose we have a frame .O; I / on the affine complex line `. We
denote the projective complex line by�. Thus� D `[f1g. A homography of the complex
projective line � is a bijection f of � onto itself such that there are four complex numbers
a, b, c and d such that ad � bc ¤ 0 and(

if z 2 R then f .z/ D azCb
czCd

if z D1 then f .z/ D a
c

if c ¤ 0 and and f .z/ D1 if c D 0

If we use homogeneous coordinates x and y to describe the points on the line, we have

x 2 C y 2 C where .x; y/ ¤ .0; 0/ and z D
x

y

with the convention that if y D 0 (and then x ¤ 0), then z D 1. The homographies are
then described by�

x0 D ax C by

y0 D cx C dy
where .a; b; c; d/ 2 C4 and ad � bc ¤ 0

Remark 1. A homography is depending on 3 complex parameters (or 6 real parameters). To
characterize a homography you need then just to know the images of three distinct points.

Remark 2. A homography of the complex projective line is also called a Möbius transfor-
mation.

Classification of the homographies of the complex projective line

The classification corresponding to the classification of real homographies is easier than
in the real case. Here we have only two possibilities : either the second order equation has a
double solution and the homography is called parabolic or it has two distinct solutions. The
homographies with two fixed points are not all called hyperbolic.

The parabolic homography has double fixed point z0 ¤1 if cz20 C .d � a/z0 � b D 0
and 2cz0 C d � a D 0. Thus z0 D a�d

2c
. Now if c D 0 the solution has to be1 and the

equation .d �a/z�b D 0 has to have the solution1. Thus d �a D 0 and the homography
has the form

z0 D
az C b

a

that is z0 D zCh which is a translation. By changing the frame in a complex projective line
we can always write a parabolic homography as a translation.
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If we have a homography with two fixed points, let us take a frame such that the fixed
points are 0 and1. For that we need respectively b D 0 and c D 0.Then the homography
takes the form z0 D az

d
with ad ¤ 0 or

z0 D kz with k ¤ 0

It is just a bijective homothety (or homothecy, or homogeneous dilation). We have to exclude
k D 1 which describes the identity map. If k is real positive but different from 1, the
homography is called hyperbolic. If � is such that jkj D 1, but k ¤ 1 then the homography
is called elliptic. If k 2 CX .RC[fzI jzj D 1g/ then the homography is called loxodromic.

To the homography z0 D azCb
czCd we associate the matrix

�
a b

c d

�
. By a change of frame

on the projective line the matrix is changed into a conjugate matrix and all the conjugate
matricies may be obtained. A regular complex square matrix of order 2 is conjugated either

to the matrix
�
� 1

0 �

�
or to a matrix

�
� 0

0 �

�
with � ¤ 0. But two matrices A and A0 such

that A D ˛A0 with ˛ ¤ 0 are associated to the same homography. We can thus describe the
classification in the following way : the homography different from the identity is associated
to

1.
�
1 1

0 1

�
and is then called parabolic

2.
�
� 0

0 ��1
�

with j�j D 1 and � ¤ 1, and is then called elliptic

3.
�
� 0

0 ��1
�

with j�j 2 R X f�1; 0; 1g, and is then called hyperbolic

4.
�
� 0

0 ��1
�

with j�j D 1 and � 2 C X .R [ fz 2 C j jzj D 1g/, and is then called

loxodromic (etymology : (dromos) running (loxo) slantwise).

3.3 cross-ratios

Cross-ratio of 4 elements of C [ f1g

Definition. Let z1, z2, z3 and z4 be four elements of C [ f1g, the cross-ratio of these four
(generalized) complex numbers denoted by .z1; z2I z3; z4/ is given by

.z1; z2I z3; z4/ D
z3 � z1

z4 � z1

z4 � z2

z3 � z2

If one of these elements is1 you have to simplify away the two factors where it appears.
For example :

.z1;1I z3; z4/ D
z3 � z1

z4 � z1

or
.z1; z2I1; z4/ D

z4 � z2

z4 � z1



20 THÈME I. PROJECTIVE GEOMETRY. CH. 1. PROJECTIVE SPACES

Cross-ratio of 4 points on a complex projective line

The definition is the same as in the real case.

Definition. Let ` be a complex projective line. Choose one pointm1 on ` and call it point at
infinity. Let� be the affine line `Xfm1g. Choose a frame .O; I / on�. We call cross-ratio
of the four points a, b, c and d on � the cross-ratio of the abscissae :

.a; bI c; d/ WD .za; zbI zc ; zd / D
zc � za

zd � za

zd � zb

zc � zb

We extend the definition to the cases when one of the four points a, b, c or d is the point
m1 by giving to the point m1 the abscissa1.

Theorem. A bijection f of R [ f1g preserves the cross-ratios if and only if f is a homo-
graphy.

Proof. The same as in the real case. �

Theorem. The cross-ratio of four complex numbers is real if and only if the four points
belong to a common circle or real line.

Proof. Let A, B , C and D be four points on the complex affine line and let the complex
numbers associated to these points with respect to an affine frame .O; I / be zA, zB , zC and
zD . Now we notice that

arg
� zC � zA
zD � zA

�
D oriented angle.

��!
AD;
��!
AC/

Then the cross-ratio is real if and only if

.
��!
AD;
��!
AC/ � .

��!
BD;
��!
BC/ D 0 .mod �/

which characterize the fact that the four points belong to a circle or a real line. End the proof
by looking at what happens when one of the points is1. �
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§ 1. Projective equality of linear motions. Schwarzian

We want to study curves from a cinematic point of vue, that is to say parametric curves.
Two such curves are "equal" if not only the geometric curves are equal but also if the mobile
point is located at similar points for equal value of the parameter t .

In Euclidean geometry let z be the real abscissa of a point on a real oriented Euclidean
affine line with respect to a frame .O; I / where the distance OI is equal to 1 and the
direction from O to I is direct. Let us consider two parametric curves z D f .t/ and z D
F.t/. When are they "equal" ? We should have F.t/ D f .t/C b for some b. The condition
may be written

8t 2 R F 0.t/ D f 0.t/

The two mobile points have same speed. The problem was easily solved since the group of
invariance of the oriented Euclidean line is just the group of translations. In the case of the
projective line the group is the group of homographies.

We’l denote by� the projective line on which the mobile point is moving. Let .A;B; C /
be three distinct points of �. We take this triplet .A;B; C / as a frame on �, which means
that the abscissa z of the mobile point M is the following cross-ratio :

z D .M;AIB;C /

In such a frame we have zA D 1, zB D 0 and zC D1. Thus :

.z; 1I 0;1/ D .M;AIB;C /

21
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Two motions (or parametric curves)

z D f .t/ and z D F.t/

are "equal" if and only if there is a homography z 7�! azCb
czCd such that for all t we have :

F.t/ D
af .t/C b

cf .t/C d
.�/

Since the homography depends on three parameters, we need to derive three times to
get a condition of equality without parameters. If we derive (*) once, we get

F 0.t/ D
.ad � bc/f 0.t/
.cf .t/C d/2

Taking the logarithmic derivatives of both sides, we get

F 00.t/
F 0.t/

D
f 00.t/
f 0.t/

�
2cf 0.t/
cf .t/C d

Let us suppose c ¤ 0 and put C D d
c

, we get

F 00.t/
F 0.t/

D
f 00.t/
f 0.t/

�
2f 0.t/
f .t/C C

or

f .t/C C D 2f 0.t/
f 0.t/F 0.t/

f 00.t/F 0.t/ � F 00.t/f 0.t/
Deriving one more time we get rid of the constant C and

f 0.t/ D
.f 00.t/F 0.t/ � F 00.t/f 0.t//.4f 0.t/f 00.t/F 0.t/C 2f 0.t/2F 00.t// � 2f 0.t/2F 0.t/.f 000.t/F 0.t/ � F 000.t/f 0.t//

.f 00.t/F 0.t/ � F 00.t/f 0.t//2
Simplifying by f 0.t/ we get

.f 00F 0 � F 00f 0/2 D 4f 002F 02 C 2f 0f 00F 0F 00 � 4f 0f 00F 0F 00 � 2f 02F 002 � 2f 0f 000F 02 C 2f 02F 0F 000
or

3f 002F 02 � 3f 02F 002 � 2f 0f 000F 02 C 2f 02F 0F 000 D 0
Dividing by 2f 02F 02, we get

F 000.t/
F 0.t/

�
3

2

F 00.t/2

F 0.t/2
D
f 000.t/
f 0.t/

�
3

2

f 00.t/2

f 0.t/2

Definition. The Schwarzian derivative of a real function of a real variable f of class C 3 in
a point t such that f 0.t/ ¤ 0, denoted ff gt is :

ff gt D
f 000.t/
f 0.t/

�
3

2

f 002

f 02

We may also call the function t 7! ff gt the projective acceleration of the mobile point with
abscissa f .t/.
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From our computations we deduce the following theorem.

Theorem. Two parametric linear curves are projectively equal if and only if they have the
same projective acceleration.

Corollary. Let t 7�! K.t/ be a given function. The equation of order 3

ff gt D K.t/

defines all the parametric curves with projective acceleration equal to K. If one knows one
solution f0 all the other solution are t 7�! af0.t/Cb

cf0.t/Cd where a, b, c and d are real numbers
such that ad � bc ¤ 0.

§ 2. An other method. Normal coordinates

2.1 Parametric linear curve described with homogeneous coordinates

Following the general description of a point on a projective line we may use homo-
geneous coordinates .x; y/ instead of the inhomogeneous coordinate z. The two types of
coordinates verify :

z D
x

y

We may describe the parametric curve by a couple of equations(
x D x.t/

y D y.t/

2.2 Linear differential equation satisfied by two given functions

Let x.t/ and y.t/ be two functionsof class C2. We suppose that the mobile point is realy
moving, that is x.t/

y.t/
is not a constant or x.t/y0.t/ � x0.t/y.t/ ¤ 0.

We consider the second order linear differential equation in the unknown function �ˇ̌̌̌
ˇ̌�
00 � 0 �

x00 x0 x

y00 y0 y

ˇ̌̌̌
ˇ̌ D 0

The solutions of this equation are

C1x C C2y where C1 2 R and C2 2 R

The equation may be written explicitely

.1/ � 00 C p.t/� 0 C q.t/� D 0

where p.t/ D �
x00y � y00x
x0y � y0x

and q.t/ D
x00y0 � y00x0

x0y � y0x
.



24 THÈME I. PROJECTIVE GEOMETRY. CH. 2. READING ELIE CARTAN

2.3 Some parametric curves equal to the given curve

Let us consider two linearly independant solutions x1.t/ and y1.t/. We have four constants
a, b, c and d such that�

x1.t/ D ax.t/C by.t/

y1.t/ D cx.t/C dy.t/
with ad � bc ¤ 0

The function z1.t/ D
x1.t/
y1.t/

is a homographic function of z D x
y

. Thus z1 describes a pa-
rametric curve projectively equal to that described by z. But we do not get all the parametric
curves projectively equal to that described by z : we could start with .�.t/x.t/; �.t/y.t//
for any function � which never takes the value 0.

2.4 Normal coordinates

Instead of the functions x.t/ and y.t/ above we may start with 1
�.t/

x.t/ and 1
�.t/

y.t/.
Thus the equation replacing .1/ shoud give solutions �1 D 1

�
� or

� D ��1

Then
� 0 D �0�1 C �� 01

and
� 00 D �00�1 C 2�0� 01 C �� 001

The equation (1) becomes

�� 001 C .2�0 C p�/� 01 C .�00 C p�0 C q�/�1 D 0

or

� 001 C .2
�0

�
C p/� 01 C .

�00

�
C p

�0

�
C q/�1 D 0

Let us choose � such that

2
�0

�
C p D 0

We have to replace (1) by

d2�1
dt2
C r.t/�1 D 0 where r D �

1

4
p2 �

1

2
p0 C q

Let us skip the index 1. We call normal the homogeneous coordinates .x; y/ such that x
and y are linearly independent solutions of the equation

(II)
d2�
dt2
C r.t/� D 0


