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Preface

Determinants are important tools in analysing and solving systems of linear equations. We have
for instance:

Theorem. A system ofn linear equations im unknowns(zy, s, . .., ;)
a1y + G2 + - A+ G, = bl
a91T1 + QA9Xy + -+ +  QonT, = b2
Ap1T1 + QAp2Zo + 0 A+ GppXy = bn

has a unique solution if and only if the determinant of the coefficient matrix

11 Aiz - Aip

Q21 Qg2 -+ d2p
A= (aij)nxn =

ap1 Qp2 -+ Gpp

denoted bylet A, det(A) or | A|, is different from zero:

det A # 0.



1 Some words about linear algebra

1.1 Linear functions (or maps)

Amapf: E — F,froma setF to a setF' is said to be linear if for any andv' in E:
fli+0) = f(@) + f(0)
But then we must also havlu + ) = f(u) + f(@) or f(2d) = 2f(&) and in the same way
fBa) = f(a+2ad) = f(a) + f(2u) = f(u) + 2f (@) = 3f (),
and so on.
u = u, we have
f(50) + f(30) = f(zu+ 30) = f(a)
or2f(31) = f(u) or even betterf (31) = 3 f(a).

2
In that way we get for any rational numbglthe relationf(gﬁ) = gf(ﬁ).

Also, sinceld + 3

Since every real numberis a limit of rational numbers, we get the general rule
f(d) = Af(a).

Now we have a better definition of a linear map or function:
A function f : E — F'is linear if for anyz and in E' and any reak:

{f(17+?7) = fu) + f(¥)
fa) = Af(a)

1.2 Linear spaces

Our previous definition of a linear map or function is not yet quite good since we cannot be sure
that the addition and the multiplication by a real number have any meaning in the' setd

F. We have to assume that these operations have meaning in the aatsF', that is to say

we must have a specific structure on these sets. The structure we need is called "linear space”.
More precisely:

Definition 1.2.1 A set E is called alinear spaceor avector spacdthe elements of E will be
called elementsr vectorg, if there are two operations defined én

the addition+ such that:

— —

YV u, v andw: (4 + v) + @ = U + (U + o)
J0suchthat @: @+0=a

V @, 3 an opposite-i such thati + (—a@) = 0
Vaandv: i+ v=7v+1u

the multiplication of a vector by a real number is such that for any vectarsd« and for any
real numbers\ and::
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A(pat) = (Ap)u

Example 1.2.2[n = 0] A set with only the null vectof is a vector space if we put the rules
0+ 0 =0and\0 = 0.

Example 1.2.3[n = 1] The set of real numbers is a vector space with the usual addition and
multiplication.

Example 1.2.4[n = 2| The set of matrices witih column and2 rows

R = My, (R) = {(Z>

becomes a vector space if we define addition and multiplication by a real number in the follow-
ing "natural” way: for any two vectors ifR?*!:

() (a)=(22)

and for any vector ifR?*! and for any real numbey:

-
G (8)

Example 1.2.5[n] The sefR™ or M,, 1 (R) is a vector space.

a,ce]R}

The nul vector is then

Example 1.2.6 For any positive integers: andn, the set of matriceR™*" = M,, ,,,(R) with
n rows andm columns is a vector space.

Example 1.2.7 The set of all real functions defined @nis a vector space if
[ + g is the functionr — f(z) + g(x) and
Af is the functionr — A f(z).

1.3 Examples of linear maps
af:R— R

Proposition 1.3.1 A function f from R to R is linear if and only if there is a real number
such that for any real numberwe have:

f(u) = au



1 SOME WORDS ABOUT LINEAR ALGEBRA 6

Proof. If there is such am, we have

flu+v) = alu+v)=au+av= f(u)+ f(v),
fOu) = a(Au) = (aN)u = (Aa)u = Mau) = A f(u).

Conversely, supposgis linear. Since: = lu = ul, we getf(u) = f(ul) = uf(1) = f(1)u.
Let us puta := f(1), we have for any: in R: f(u) = au. O
b) f . R2><1 N R2><1

Proposition 1.3.2 A function f from R?*! to R?>*! is linear if and only if there is & by 2
matrix A such that for any vectar we have:

(@) = Ad.

Proof. First suppose there is such a matix Let us write explicitlyA and two vectorsi and

U as )
a . n . v
() () ()
. U a b\[u auy + bu
S () :f(u;):(c d)(ui)z(culleduz)'

We can check thaf(u + ¢') = f(u) + f(¥) explicitly by computing both sides of that equality:
Lo Uy vy w4\ [ a(ug4v1)+b(us+vs) \ [ aus+bust-avi+bu,
flitv) = [ (<u2) + (vg )) f(UQ“FUQ) N (c(u1+v1)+d(uQ—|—vg) -\ cuy+dus+cvy+duy
and on the other hand:
. o Uy v1\ [ aui+busy avi+bvy \ [ aui+bug+avi+bu,
J(@)+f(v) = f(uz) +f(’02) o (cu1+du2) +<C’U1+dvg> a (CU1+dU2+CU1+dU2>
We have also to check that for any reahnd any vectoii, we havef(\id) = Af(@): the left
side of the equality is in fact

L u o Aur)  adui+bAug\  ( Aaug+bug)
fQa) = f (A(u;)> - f()\u;) B (c)\ull—l—d)\uz) - ()\(Cull—l—dui))7

and the right hand side is:
N ur\ [ autbus [ A aui+bus)
A (i) = )\f(uQ) o )\(cu1+duz) o <)\(cu1+du2) ’

Conversely, iff is linear, let us define

()= (2)=C)

Then we can write for any vectar.

() () ()

Then we have
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and thus by linearity

0 = oGl -
- ae)enlt)-():

c)f:R¥>* - R

(o)) +7 () = (o) =21 (3)
(1) = (Lo = () = (2 5)(1)

Proposition 1.3.3 A function f from R?*! to R is linear if and only if there is a by 2 matrix
(a b) such that for any vectar we have:

f(@)=(a b)a

Proof. Left as an exercised

1.4 Dimension and basis
a) Affine plane versus vector plane

A usual plane such as the blackboard or a sheet of paper gives the image of an affine plane in
which all the elements, called points, play the same role. To get a vector plane we need to have
one element selected. That element will be the null ve&tdn a vector plane the elements are
calledvectors we can add them using the parallelogram rule. We can also multiply a vector by

a number.

From now on, we will only consider the vector plane. Two vecibendv are calledcollinear
or parallel if v = \u for some real or ¥ = pv for some real.

Notice that) is collinear to any vector.

b) Basis

To be able to compute anything we need real numbers. To specify every vector we have to
choose two vectors which are not collinear, let us call theand ;. Now any vectorii can

be written asi = u,i + u,j and the couple of numbers,, u,) is unique: we say that, j)

Is abasisof the vector plane. Once we have a basis of the vector plane, we have a bijection
preserving the operations between the vector planéRdnd

- = a
ar+cj — (c>

Therefore the vector plane is oftéfentifiedwith R2.
Since a basis has exactlyectors we say that thdimensiorof the space g, dim = 2.
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c) Matrix associated to a linear map from the vector plane into itself

Let L be a linear map from the vector plane into the vector plane and suppose we have chosen
a basigi, j). The relationt’ = L(«) may be written

-,

U1’7+ 025 = L(UJJF usj)

-,

Supposé.(i) = ai + ¢j andL(j) = bi + dj, then:

— —,

vii+ 0] = L(wi +uzj) = w1 L() + uz L(})
= wy(ai 4 ¢f) + ug(bi + dj) = (auy + buy)i + (cuy + duy)j
or

v = auy + busg
Vg = cuy + dug

()= (¢ a)C2)
()

is associatedo the linear mapl relatively to the basiﬁ, f). If we change the basis we get
another matrix4’. Then there is an invertibl2 x 2 matrix P such thatd and A’ are related by
the equalityd’ = P~1AP.

or even better:

We say that the matrix

d) Generalization

Let F be a vector space. A sequence of vecterses, . . ., e,) is abasisif every vectoru in £
can be written in one and only one way as:

U = Ure] + Useo + ...+ Upty.

Since a basis has exactiyectors we say that thdimensiorof the space i%.

For every linear mag : £ — FE there is one square matrix of ordeassociated tg relatively
to the basigey, ey, ..., ¢,). If one changes the basis, the matrix is changed following the rule
A= P 1AP.



2 Geometrical meanings of determinants

2.1 Determinant of a square matrix

For2x2 matrices
a b

c d

‘ = ad — be.

The system of 2 linear equations in 2 unknownsy)

ar + by = p
cx + dy = q

has a unique solution if and onlydfl — bc # 0, and the solution is then

~ pd—bq
v ad — be
_aq—pc
y = ad — be

2.2 Area of a parallelogram

-,

Let £ be a 2-dimensional vector space with basig). We choose as unit area the area of the
parallelogram constructed arandy, that is the parallelogra®® P.SQ such that

OP=i, OS=i+; and OQ = .

Problem 2.2.1 Let w andv be two vectors
@=ai+cj and ¥=bi+dj.
What is the are@\ of the parallelogram constructed arand?

To find A we need 3 rules:

Rule 1. If @ is parallel toi and# parallel toj, that is

-

i=ai and ©¥=dj

thenA = ad.
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Rule 2 (Euclid, about 300 BC). The area of a parallelogram does not change when you let one
side glide on the line on which it is lying

D C D’ C

DC=D’C’'=AB Area (ABCD) = Area (ABC’D’)

A B

Rule 3. The area is positive if you have to turn in the same direction (to the left or to the right) to
move from to v as from: to j. The area is negative if you have to turn in opposite directions.
Thus the rule 1 is valid even if and/ord are negative numbers.

Definition 2.2.2 The oriented ared is called the determinant af and v with respect to the
basis(i, 7) and denoted by
A = det(u, V).
(4,)

2.3 Computation ofdet; - (i, ) whend = ai + cj and & = bi + dj
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First, we use rule 2:

<)
<y

(4,) (4.3)

— — b —
= (iqt<ai +cj, (d— —C)j).
a

(4:3)

u)

ISHIS Y

Using rule 2 once again (for the other side) we get

— b —
det (@, 7) = det (af, (d — =)j).
(6:3) (4.9) a
Then the rule 1 gives us
bc

det(, ) = a (d — —) det(7,7) = ad — be.
(i.5) a - (i)
The next Theorem gives a characterisation of the funqihnm) :Ex E —R.
Theorem 2.3.1 The functiondet(;j) - Ex E—R,
(ai + ¢j, bi +dj) — ad — be
is the only function fromF x E to R such that
() Forall@ € E the functiondet; 5 (4, -) : £ — Ris linear.
Forallv' € E the functiondet ;7 (-,7) : E — Riis linear.
(i) Foralld € E holdsdet ;7 (i, @) = 0.
(iil) detz5 (7, /) = 1.
The (i) means that for any vecto#is v, @' andv’, and any numbers andyu, we have
det(d, AW + pt') = Adet(d, 0) + p det(d, ')

(4,4) (4,4) (4,)
det(XGi + i, 0) = Adet(d, 3) + o det(d, 7).
(4.4) (4,4) (4,)

Proof. To prove the existence we just have to check that (i), (ii) and (iii) are true. To prove
unicity, we proceed in two steps.

Step 1 For any functionp : £ x £ — R such that (i) holds we have for any vectarandv:
p(i + U, U + V) = (i, 4) + (U, V) 4 (¥, @) + (7, 0).
If ¢ is such that (ii) holds, we get

—

0=0+ p(u,v) + p(v,u)+0
so that
(0, 1) = —p(i, V). 1)
Step 2 Using (i), we get
olai +cj,bi+dj) = abo(i,i) +ad (i, ]) + be (], 1) + cd (], ]
From (ii) and @) we deduce

-,

)

-,

plai + cj, bi + dj) = (ad — be)p(i, ),
and (iii) shows thatp = det ;7. O
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2.4 Determinant of a linear function from Eto F

Lemma 2.4.1 Let E be a 2-dimensional vector space with a b{aiﬁ) andletf : F — F be
a linear function. Then there is a numbesuch that:
Vi€ E, Vi€ E  det(f(@), f()) = 0; det(q, D). )

(4,9) (4,9)

Proof. Lety : E x E — R be the mapping

(@, V) — (i, 7) = ;i%t) (f(a@), f(9)).

“J

It easy to check thap satisfies (i) and (ii) of Theorei®.3.1. By the same reasoning as above,
we get: o o

plai+cj,bi +dj) = (ad — be) o(i, ).
Thus B

O = (i, 7) = Eiqg (f (@), F(4))
]

is such that2) holds.O

Interpretation of the Lemma

Applying f we transform a parallelogram constructed on any two vect@isdv into a paral-
lelogram constructed ofi(«) and f(¢/). The lemma means that the ratio between the areas of
these parallelograms does not depend on the choié¢anflv, but only onf. The ratio may be
written

B = det (f(i), f(7)
for any couple of independent vectarandy. This justifies the following definition.

Definition 2.4.2 Let f : E — E be linear. The dqetqerminant gt denotedlet f or det(f), is
the number independent of the choice of the bésig)

A
Y

det f = %% (f@), £()).

Remark 2.4.3 Sincedet f is the coefficient which multiplies the areas when we use the trans-
formation f, we have
det(go f) = detg - det f.

2.5 Two interpretations of the2 x 2 matrix determinant

Interpretation 1

Let us denote

(28) A=) a=()

Then the determinant with respect to the standard asis,) of the two column vectors oft
has the same value as the determinant of the madirprovided we preserve their order:

sl = e ((0)(0)

det A = d
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Interpretation 2

Let (7,7) be a basis of a vector-spa¢e The matrix A is associated to the linear function
f: E — FEis defined by

f@)=ai+cj and f(j)=bi+dj.

Then
det A = det f.

Remark 2.5.1 The relationdet(g o f) = det g - det f will become
det(BA) = det B - det A

for all 2x2 matricesB and A.
We may check this formula explicitly. Let

a b a b
A:<C d) and B:(C, d’)'

_(da+bc db+bd
“\cda+dc Jb+dd

Then

and

det(BA) = (da+bc)(db+dd)— (ab+Vd)(da+dc)
= ddad+Vcdbc—ddbc—Vcad
= (d'd — V') (ad — bc) = det B - det A.

Remark 2.5.2 If we change basis, the matrix associated witis changed from to P~ AP,
whereP is an invertible (i.e. regular) matrix and~! is the inverse of”. We have as we expect

det(P~'AP) = det A
since the two numbers are equalii@ f. We can check:

det(P~'AP) = det P™'-detA-detP
= detP'-detP-detA
= det(P7'P)-det A
= detl-detA
= det A.

2.6 Backto the linear system

We write the system
ar + by = p
cx + dy = q
as a linear combination
P =2zU+yV,
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where

To find z andy, just notice that

det (P,V) = det (U +yV,V)=2x det (U,V)
(€1,€2) (€1,€2) (€1,€2)
and
det (U, P)=1y det (UV)
(€1,62) (€1,e2
We find the unique solution, wheneveétt, -, (U, V) = ad — bc # 0, is accordance with
Cramer’s rule:

p b a p
q d ¢ q
T = and y=
a b a b
c d c d
2.7 Order3
Determinant of a square matrix of order 3
We define (or remember that)
11 aiz2 a3
Q21 Q22 Q23 | ‘= Q11022033 + Q12023031 + (13021032 — (13022031 — G11G23G32 — G120210G33

a3; aszz2 ass

Remark 2.7.1 The Sarrus’ ruleis a practical rule for computing determinants of ordetJ3e
+ sign in front of the products of factors on a parallel to the main diagonal of the matrix and
sign for parallels to the other diagonal:

+ _
ail a2 ais ail ai2 ail a2 ais ail ai2
a21 a22 az3 a21 a22 a21 aoo a3 a1 a99
aszi asz2 aszs a31 a32 asy ass ass asy aso

2.8 Oriented volume of a parallelepiped constructed o1 vectors

Suppose that’ is a vector space with ba$é 7, E) and letu, v and« be vectors inE. The
oriented volume of the parallelepiped constructed on these vegtorsand « is denoted
det ;7 ) (4, U, ) if the unit is the volume constructed on the basis.

We may accept the following rules:
Rule 1. det;+  (ai, bj, ck) = abe.
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Rule 2. The volume of the parallelepiped is not modified when one side is gliding in the plane
in which it lies:
det (@, 7, W + M + pv) = det (4,7, 0).

- = >

ME
(4,,k) (%,4,k)
Rule 3. The volume is positive (resp. negative)if, v, )
tation as the basi§, 7, k).

Computed value of the volume is

11 daiz2 A3

QLE (a115+ CL2J+ as k, a12;+ a2zj+ aszk, CL13Z+ a235+ assk) = | az1 asn as

(03:8) azy Aazz2 Aas3
Characterisation of the function det TR - FE3 SR
Theorem 2.8.1 The functiondet ; ;7 : (4,7, @) —— det;; (@, U,4) is the only function

from E3 to R such that

Determinant of a linear function f from Eto E

Theorem 2.8.2 Let £ be a3-dimensional vector space and Igt: £ — FE be linear. The

number - B
(f(), (), F(K))

).

det f := det
(7.7.F)
is independent of the choice of the ba@is/,

Definition 2.8.3 The base invariant numbeet f is called thedeterminantof the linear func-
tion f : £ — E (see Theorer.8.2).

Remark 2.8.4 det f is the multiplication coefficient of volumes when you apply the transfor-
mation f, thus
det(go f) =detg-det f.

aj; a2 Az 1 0 0
A= Q21 Q92 23 |, and 51 =10 , 52 =11 , €3 =10 ,
31 Q32 Q33 0 0 1
you can think ofdet A as
11 12 ai13
det A = (_‘dﬁet_‘ ) 921 s a9292 s as3
€1,€3,€
P a3y a32 ass

orasdet A = det f, if fis alinear function whose associated matrixlisith respect to some
basis.
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2.9 Solving a system o8 linear equations in 3 unknowns

Following the idea of Subsecti@hg, let us again write the system

a1 + apry + aizry = b
a1T1 + QTs + asTs = by
aziry + asry + asrz = by

as a linear combination of the columns:

B =x2,Vi + 2oV + 23V53,

where
bl aii a12 13
B=|b|, W as |, Vs a2 and Vi = as
b3 a31 a32 a33
Notice that
(ﬁd_‘etﬁ)(Ba‘/Qa‘/?)) =T _‘det_‘ (%7‘/2)‘/3)
€1,€3,€3

(€1,€3,€3)

Thus, ifV;, V5 andVj; are linearly independent we again get Cramer’s rule

by a ais

a; by @13
by ag a23

a;y a2 b
as  bo 23 as Qg by
by asy ass as; bz

a33 as; asy b
Ty = , Lo =

a1; a2 i3
Q21 Q22 Q23

, L3 =
11 a2 i3
Q21 dAg22 (23

a11 Qa2 Q13

Q21 Q22 Q23
31 a3z ass 31 dz2 (33 a31 a3z (33

16



3 How to compute determinants of matrices

3.1 One inductive rule

Definition 3.1.1 Let A be a square matrix of order > 2. We denote b)M{j and callminor
matrix of A indexed by andj whenl < i < n andl < j < n, the matrix obtained when you
supress thé-row and thej-column of A.

If A= ((Zij)an, then

a1q c. a1,5-1 ay j+1 ce QA1n
MA = a;—11 -+ Qi—145-1 Ai—144+1 --- Ai—1n
1
J it1,1 - Gip1j-1 Gig1j41 --- Qifln
Ap 1 c. Qp,j—1 Ay j+1 ce Apn

Rule. Let A be a square matrid = (a;;)nxn-

1. Ifn= 1, thendet(an) = a1
2. If n > 2, thecofactor A;; of the element;;; of A is
Aij = (—1)i+j det (Mz?)

Thedeterminanbf A is a numberet A such that for any row and any columr

det A = i arjAy; = i Wik Aik-
j=1 i=1

Remark 3.1.2 If we use the first formula, we say that we are developing the determinaht of
along the row . If we use the second, we develop along the coldmn

Remark 3.1.3 To remember the sign to use, you just have to think of the game chess:

+ - 4+ - +
+ - 4+ - +
+ - + - +
' +
Example 3.1.4 Let
A — (an a12>.
Q21 A22
The cofactors ared;; = a9y, A9 = —ag1, As; = —ay and Ay, = aq;. There are four

possibilities for developinget A, giving happily the same result.
Developing along the first row:

det A = a1 A + 12412 = ar1a2 — ar2a91,
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along the second row:
det A = a1 Agy + ag Aoy = —agia1z + axan,
and along the columuns:

det A = a1 A +andy = A11022 — Q21012
det A = a19A12 + ands = —ai2a91 + aa1;.

Example 3.1.5 Developing along the first row:

3 01
2 —1 0 :3‘_1 0‘_0‘ 2 0’4-1‘ 2 _1‘:3(—2)+(—2):—8.
1 2 —4 2 —4 1
—4 1 2
Example 3.1.6 Computedet A for
2 -1 0 3
1 3 01
A= —1 2 -1 0
0 -4 1 2

Let us develop it along the third column (why?). We get

i_é gi’ 2 —1 3 2 —1 3

= (=11 3 1|=1] 1 3 1|=-10—12=-22.
-2 =10 0 —4 2 -1 20
0 —4 1 2

3.2 Main properties of determinants

Let A = (a;;) be an x n square matrix.

. det(AB) = det A - det B.
. det(AI) = A", det(AA) = A" det A for A € R (order of A is n).

1
2
3. If Aisregular, thenlet(A™!) = (det A)~!.
4. det AT = det A.

5

. For triangular (and diagonal) matrices, the determinant is the product of the elements on
the main diagonal

6a. If all the elements of a row are zero, then the determinant is zero.
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6b. If all the elements of a column are zero, then the determinant is zero.

7a. If two rows are proportional, the determinant is zero.

7b. If two columns are proportional, the determinant is zero.

8a. If arow is a linear combination of the others, then the determinant is zero.

8b. If a column is a linear combination of the others, then the determinant is zero.
9. Let B be the matrix deduced from by

(i) permutation of two rows (resp. columns), thét B = — det A.

(i) multiplication of all the elements of a row (resp. column) by a numher
thendet B = k det B.

(i) addition of the multiple of a line (resp, a columns) to an other, then
det B = det A.

10. If P is a regular matrix, then
det(P~'AP) = det A.

3.3 Examples

Example 3.3.1
a a—1 a+2 3a+1 a—1 a-+2
a—+2 a a—1] = |3a+1 a a—1|addcol2and 3tocol 1
a—1 a+2 a 3a+1 a+2 a
1 a—1 a+2
= (Ba+1)|1 a a—1|byproperty 9 (i)
1 a+2 a
1 a—1 a+2 | 3
= (Ba+1)|0 1 -3 | =(Ba+1) =T73a+1).
3 =2
0 3 -2
Example 3.3.2 Let’s compute
1+a 1 1 1
1 1—a 1 1
Dap=1 1 1406 1
1 1 1 1-9b
Subtract the second column from the first and after that first row from the result:
a 1 1 1 a 1 1 1
D _ a 1—a 1 1 |0 —a 0 0
“b=10 1 14+b 1 | |0 1 1+b 1

0 1 1 1—0b 0 1 1 1—b
Develop along the first column, and then again:

—a 0 0
Dyp=a| 1 1+0b 1 :a(—a)’
1 1 1-b

1+ 1

1 1-b ' = —a*(—b*) = a*V’.
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Example 3.3.3 Compute the determinant of order

1 1 1 11

-1 0 1 11

~1 -1 0 11
D, = :

-1 -1 =1 -~ 0 1

~1 -1 -1 -+ —1

Add the first row to all the others, you get a triangular matrix, with ori§/on the diagonal.
ThusD,, = 1.

Example 3.3.4 The Vandermondeleterminant.
Letzy, x,. .., x,, ben real numbers. Compute the polynomial

1 oz 22 . abt

1 @y 23 !
A(zy, g, .. 2p) = _

1z, 2 ... !

SinceA = 0, if z; = x;, we can factorize by;—x;. Itis easy to see thak is homogeneous of

degree
n(n —1)

O+14+24...4(n—1) = 5

Thus

>]
wherek is a constant. We determirieby considering the coefficient af,z3 ... 2"~ which
is 1. So finally we get

1>7
Example 3.3.5 TheHilbert determinant.
Let us compute

1 1 1 1
1 2 3 n
1 1 1 1
2 3 4 n+1
|1 1 1
H, = 3 1 5
i 1 1 1
n n+1 n+2 e 2n—1
Substract the last row from the others:
n—1 n—1 n—1 _n=1
n 2(n+1) 3(n+2) T n(2n—1)
n—2 n—2 n—2 __n=2
2n 3(n+1) 4(n+2) te (n+1)(2n—1)
n—3 n—3 n—3 .
H = 3n 4(n+1) 5(n+2)
n =
1 1 1 1
(n—1)m  n(n+1) (n+1)(n+2) " (2n—2)(2n-1)
1 1 1 1
n n+1 n+2 2n—1
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1 1 1
L3 3 E
1 1 1 _1
2 3 4 n+1
(n—1)! 5 1 &
nn+1)...2n—1)| -
11 1 1
n—1 n n+l 2n—2
1 1 1 1
Substract the last column from the others:
(n—1)! (n—1)!
Hn n—1
nn+1)---2n—1) n(n+1)---(2n —2)
ol (G-
j=1 2] —1 ((2] - 1)!)2
We get the following numbers
1 1 1 1 1 1 1
Hi=1 Hy= —, Hy= — - —=——, Hy = . =
12 180 12 2160 2800 2160 6048000

We notice thatH, becomes very small, even compared to the values of the elements of the
matrix; it is very useful for testing numerical methods, because this matrix is very unstable with
respect to the values of its elements.



4 Definitions and proofs

4.1 Determinant of vectors with respect to a basis
Vocabulary and notations

Definition 4.1.1 We define a number; depending on its indices as follows.

1%2...%n

€14, 1S €Qqual ta), 1 or —1 according to the following conditions:

Eiir.in, = 0 if two of the indices are equal,

Eirin.in = 1 if {i1,...,4,} = {1,...,n} and an evemumber of
transpositions are needed to reordlek, .. .7, into12...n,
Eivig.in = —1 1f {iy,...,1,} ={1,...,n} and an odcdhumber of

transpositions are needed to reordei, .. .7, into1 2...n.

Example 4121 =1,e91 = —1 andEH =eg99=0
€123 = €931 = €312 = 1 @Nde 39 = €391 = €913 = —1
€112 = €113 = €111 = €212 = ... = 0

45132 = €14532 = —€12453 = —E€12345 = — 1.

Let S, be the set of bijections dfl,...,n} on{1,... ,n},i.e.
Sp:={0:{1,...,n} = {1,...,n} | o bijection}.

Sy, is called thesymmetric group of order. The elements of,, are calledoermutations

If o € S, we denoter; := (i) fori = 1,2,3,...,n. Note that ifo € S,,, then, by bijectivity,
£5109..0, CANNOL be zero and belongsfto, —1}.

Remember Cartesian product: Af is a set,E” := E x E x ... x E is the set ofn-uples
(v1,v9,...,0,), Wherev; € E v, € E,...,v, € E.

Definition 4.1.3 Let E be a vector space, and consider a function " — R. We use the
following terminology:

1. pismultilinearif forall £in {1,...,n} we have

SO(/Uh ceey Uk—1, Au + HW, Vg1, - - 7Un) = )\QO(Ul, cooy Uk—1, Uy Ut 1, - - 7Un)

(V1 e V1, Wy Vg 1y -+ 5 Upy)-
2. o is alternateif for all £ andh distinct
(U1« ey U1, Uy U1y -+ oy U1y Uy Upg1y -« -5 Up) = 0.
3. p is antisymmetriaf for all £ andh distinct

QO(UD cooy Up—1, Uy V415 -+ -y Up—1, W, Upt1, - - - 7vn)
= —p(V1, e Vg1, W,y Uty - ey Up 1, Uy U1y« -, Up)-
Proposition 4.1.4 If ¢ is multilinear and alternate then it is antisymmetric.
Proof. 0 =det(...,u+uv,...,u+wv,...)=det(...,u,...,v,...)+det(...,v,...,u,...) O
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Theorem 4.1.5Let E be a vector space of dimensianand let(ey, ..., e,) be a basis of-.
For any numben there is a unique functiop : £ — R such that:

(i) ¢ is multilinear,
(i) ¢ is alternate,

(i) pler, ... en) = A

n

Iffor j € {1,...,n} we havev; = > ", aje;, then

o(v1, 09, ..., U,) = @(e1,69,...,€,) E Eo10..0m 00115 Qo2 « - - Qg -
gEpn

Proof. Letv; =" a;je; for j =1,2,...,n. Then

n n n

@(U17027"'7vn) :SO ( § ailleip E aig? eiga"'a E a’innein>'

i1=1 io=1 in=1

Let us suppose that is multilinear. Then

n n n
gp(vl,vg,...,vn)zg E E i 10iy2 + - i P(€iy s €iny v vy €5 ).

i1=1142=1 in=1
Let us suppose thap is also alternate; thewp(e;,,ei,,...,¢;,,) = 0 unless there is
o € S, suchthat, = oy, iy = 09, ...,i, = 0,. And since
90(6017 €opy - vt 7607,,) = 5(&02...0’"90(61’ €1, .. 7€n)7
we may factorize byp(ey, es, ..., e,) getting the last formula of the theorem. If we choose
(e, eq,...,e,) = A, the functiony is determined. To finish the proof we just have to check

that the function defined in that way have the properties (i), (ii) and (ii).

Definition 4.1.6 The functiony such thatA = 1 is denoteddet, ., and the image of
(v1,...,vy,) by that functiondet, _..)(v1,...,v,) is called thedeterminant of the vectors
v1, ..., v, With respect to the basig, . . ., e,).

Remark 4.1.7 We may define the hypervolume in the sp#cef the generalized parallelepiped
constructed omy, vy, . .. v, @Sdet(e,, . .y (v1,. .., v,) When we take as unit the hypervolume of
the generalized parallelepiped constructedn. ., e,,.

Corollary 4.1.8 If (ey,...,e,) is a basis of the-dimensional vector spadg, and ifp : E™ —
R is multilinear and alternate, then

o =uwp(er,...,e,) det |
that is to say that for everfyy, . .., u,) in E™:

o(ug, ... uy) = (e, ...,e,) det )(ul,...,un).

en)" U

.....
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Corollary 4.1.9 If (eq,...,e,) and(vy,...,v,) are two basis ofZ, then

det)(l}l,...71)n)~ det)(eb_”’en)zll

.....

det )(ul,...,un): det )(ul,...,un)- det )(61,...,6n).

For (uy,...,u,) = (v1,...,v,), We get the expected formulal

Corollary 4.1.10 Let (eq,...,e,) be a basis of an-dimensional vector spadé. Then: anyn
vectorsvy, vy, . . ., v, are linearly independent if and onlydbt, ..y (vi,...,v,) # 0.

Proof. One side with contradiction: If, v, .. ., v, are linearly dependent, at least one of the
vectors is a linear combination of the others, and siheg., ., is multilinear and alternate
dete,,..en) (V15 vn) = 0.

On the other hand, if, v, ..., v, are linearly independent, they form a basis and thus from
Corollary4.1.9we havedet ., . .. (vi,...,v,) # 0. O
4.2 Determinant of a linear map from £ to £

Theorem and Definition 4.2.1 Let E' be a vector space of dimensiarand letf : £ — E be
linear. The numbedet, .., (f(e1),..., f(en)) isindependent of the bagis,, ..., ¢,) of E.
This number is called theeterminanof f and denoted bylet f:

det f := ( det (f(er),..., f(en)).

Proof. Let (ey,...,e,)and(vy,...,v,) be two basis of2. We have
( det )(vl,...,vn) # 0. 3)
For simplicity, we putdet, v := det,, ¢\ (v1,..., V).

Since(eq, ..., e,) is a basis and the mappig® — R,
(U1, up) — dgt (flur), ..., flun)),
is multilinear and alternate, the Corolladyl.8gives: for all(uy, ..., u,) € E™
det )(f(ul),...,f(un)) = det (f(e1),...,f(en)) det )(ul,...,un).
And then for(uy, ..., u,) = (v1,...,0,):
det )(f(vl), o floy) = dgtv- det )(f(el),...,f(en)). 4)
Since(vy, ..., v,) is a basis and the mappidg’ — R,

(Upy ..y Uy) — dgt(ul, Cey Up)
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is multilinear and alternate, the Corolladyl.8qgives: for all(uy, ..., u,) € E"

det )(ul,...,un) =detv- det )(ul,...,un).

And thus for(uq, ..., u,) = (f(v1), ..., f(v,)) we have:

det )(f(vl)a"'7f<vn)):: dgtl)' det )(f(vl)v"'7f(vn)) (5)

From the equations3f, (4) and 5) we get then:
det (f(er),..., f(en)) =, det , (f(v1),..., f(vn)).
O
Corollary 4.2.2 Let f : E — FE be linear. Thenlet f # 0 if and only if f is bijective.

Proof. A linear function f from a linear space of dimensioninto a linear space of same
dimension, is bijective if and only if it is surjective, that is if and only if the images of basis
vectorsf(e;), ..., f(e,) are linearly independent, or

0
Proposition 4.2.3If f : E — E andg : E — E are linear, then

det(go f) =detg - det f.

Proof. If f is not bijective, thery o f is not bijective and both sides of the equality are zero.

If fis bijective,f(e;),..., f(e,) is a basis for any basis, .. ., e, and
det(go ) = det (g(f(e)....g(f(ex)))
= oot (g(7(e). o g(f(en)) - det (f(er)..... flen))
= detg-det f.
O

4.3 Determinant of a square matrix

Definition 4.3.1 Let A be a square matrix of order. We denote the elements dfby a;; for
1 <i<n,1<j<n.Thedeterminanof A, denoted bylet A, is the number

det A := E Eo109..00 00110052 « - - Qgpms
oESH

wheresS,, is the set of all permutations ¢fl,2,3,...,n}.
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Proposition 4.3.2 The determinant of a matrix and the determinant of its column vectors with
respect to the natural basis,, . . . , e,,) are the same:

11 12 Ain
a21 22 Q2n
det A= det , e
€10y €n
An1 An2 QAnn

Proof. A direct consequence of Theoréhil.5and Definitior4.1.6 O

Proposition 4.3.3 SupposeX is a vector space of dimensianLet f : £ — E be linear and let
(e1,...,e,) be abasis off. The matrixA associated witlf relatively to the basige, ..., e,)
is such that:

det A = det f.

Proof. The elements,;; are such thaf(e;) = >, a;je;. Then
det A = ( det : (fler),..., f(en)) = det f.
€1...€n
O

Corollary 4.3.4 If A andB are square matrix of order, then

det(AB) = det A - det B.

Proof. Let A be associated witli, and B with g relatively to some basis. Then
det(BA) =det(go f) = det g - det f = det B - det A.

O

Proposition 4.3.51f A is a square matrix then

det AT = det A.

Proof. Let us write sgv) := ¢,,+,..0,,» Wheno € S,. Notice that the functiort,, — S,,,
T — 771, is bijective and sgfr) = sgn(=—!). Thus:

det A = Z SON0) Apy1 -+ Aoy = Z Sl CHRTIPE RS

O'ESn UES’n
—1 T
= Z SgN(7 ) aypy .- Apyy, = Z sgN(7)ayry - .. Qps, =det A”.
TESnH TESH

An alternate proof is to writed = PT(Q, with AT = QTTTPT, whereP is a product of
Gaussian process matrices with determinamnf () is a permutation matrix with determinant
+1 andT triangular. Then

det AT = detQTTTPT =det QT - det T7 - det P
= det@-detT -det P =det P-detT -det @ = det(PTQ) = det A.
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4.4 A beautiful formula

Definition and Proposition 4.4.1 Let A be a square matrix of order We denote its elements
by a;;. Theminor matring is the matrix obtained by supressing the rband the column

j of the matrixA. The determinantl;; = det(}/;}) is called thecofactorof the element;.
The matrix whose element arg; is thecofactor matrix and the transposed matrix is called the
adjoint matrixof A and denoted by adj. Thus(adjA),; = A;;. Then:

AadjA = (adjA)A = (det A)I.

Proof. Sincedet A =% ¢ €5,..0, @0, """ Uno,, WE gL

det A = Z ariAr = (A(adjA)),,-

i=1

If we computed " | ax; Aj;; we get the determinant of a matrix with two equal columns and then
(A(adjA)),, = 0if j # k. Thus the formulaC

Corollary 4.4.2 The matrix A is invertible (regular) if and only iflet A # 0. If det A # 0,

then:
_1 1

" det A
If det A = 0, A is not invertible, because if it was there would be a maltiguch thatd B = I,
and thendet A - det B = 1, sodet A = 0 would be impossible.

adjA.

4.5 Linear systems

Theorem 4.5.1 Let us consider the following vectors and matrices:

a1 12 Qin
‘/1 = 7‘/2 - ) 7Vn = )
an1 An2 Qpn
a11 A1n b1
A=Vi ... V)= . |, B=
Apl .- Qpp bn

The linear system af equations im unknownszy, x», . . ., Z,:

a11r1y + Qs + -+ G1pT, = bl
a211 + 299 + -+ Aoy — b2
Ap1T1 + Ap2Zo + 0+ AppX, = bn

has a unique solution if and onlydit A # 0.
Whendet A # 0, the solution is given for every, by

o det(‘/i . Vk,1 B ‘/k+1 .. Vn)
B det A '

T
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Proof. Let us write the system as
B=xVi+xVo+...+2,V,.

1) If det A = 0, the vectord, ..., V, are linearly dependent and do not geneiite If B
does not belong to the subspace generatéed, by. ., V;,, then the system has no solutionsBIf
belongs to that subspace then there are scglasch that

B=gVi+...+&.Va,

and this means that the vector= (&; ...&,) is a solution. We have to show that there are even
more solutions. But by linear dependence there is a non-zero vecto()\; ... \,) such that

MVt ANV, =0,

which implies that alsg + X\ # ¢ is a solution.

2) If det A = 0, the vectord/, ..., V, are linearly independent and gener&te especially
the decompositioB = & V] + ... + &,V,, is unique. Sincelet(V; ... V) is multilinear and
alternate, we have

det(Vi ... Vit B Vigr ... Vo) = apdet(Vi ... Vier Vi Vi ... Vi)
= x,det A.



