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Preface

Determinants are important tools in analysing and solving systems of linear equations. We have
for instance:

Theorem. A system ofn linear equations inn unknowns(x1, x2, . . . , xn)





a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

an1x1 + an2x2 + · · · + annxn = bn

has a unique solution if and only if the determinant of the coefficient matrix

A = (aij)n×n =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. ..

...
an1 an2 · · · ann




denoted bydet A, det(A) or |A|, is different from zero:

det A 6= 0.



1 Some words about linear algebra

1.1 Linear functions (or maps)

A mapf : E → F , from a setE to a setF is said to be linear if for any~u and~v in E:

f(~u + ~v) = f(~u) + f(~v)

But then we must also havef(~u + ~u) = f(~u) + f(~u) or f(2~u) = 2f(~u) and in the same way

f(3~u) = f(~u + 2~u) = f(~u) + f(2~u) = f(~u) + 2f(~u) = 3f(~u),

and so on.

Also, since1
2
~u + 1

2
~u = ~u, we have

f(1
2
~u) + f(1

2
~u) = f(1

2
~u + 1

2
~u) = f(~u)

or 2f(1
2
~u) = f(~u) or even betterf(1

2
~u) = 1

2
f(~u).

In that way we get for any rational numberp
q

the relationf(p
q
~u) = p

q
f(~u).

Since every real numberλ is a limit of rational numbers, we get the general rule

f(λ~u) = λf(~u).

Now we have a better definition of a linear map or function:

A functionf : E → F is linear if for any~u and~v in E and any realλ:
{

f(~u + ~v) = f(~u) + f(~v)
f(λ~u) = λf(~u)

1.2 Linear spaces

Our previous definition of a linear map or function is not yet quite good since we cannot be sure
that the addition and the multiplication by a real number have any meaning in the setsE and
F . We have to assume that these operations have meaning in the setsE andF , that is to say
we must have a specific structure on these sets. The structure we need is called ”linear space”.
More precisely:

Definition 1.2.1 A setE is called alinear spaceor avector space(the elements of E will be
called elementsor vectors), if there are two operations defined onE:

the addition+ such that:

∀ ~u,~v and ~w: (~u + ~v) + ~w = ~u + (~v + ~w)

∃ ~0 such that∀ ~u: ~u +~0 = ~u

∀ ~u, ∃ an opposite−~u such that~u + (−~u) = ~0

∀ ~u and~v: ~u + ~v = ~v + ~u

the multiplication of a vector by a real number is such that for any vectors~u and~v and for any
real numbersλ andµ:
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1~u = ~u and0~u = ~0 and(−1)~u = −~u

λ(~u + ~v) = λ~u + λ~v

(λ + µ)~u = λ~u + µ~u

λ(µ~u) = (λµ)~u

Example 1.2.2 n = 0 A set with only the null vector~0 is a vector space if we put the rules
~0 +~0 = ~0 andλ~0 = ~0.

Example 1.2.3 n = 1 The set of real numbers is a vector space with the usual addition and
multiplication.

Example 1.2.4 n = 2 The set of matrices with1 column and2 rows

R2×1 = M2,1(R) =

{(
a
c

)∣∣∣∣ a, c ∈ R
}

becomes a vector space if we define addition and multiplication by a real number in the follow-
ing ”natural” way: for any two vectors inR2×1:

(
a
c

)
+

(
b
d

)
:=

(
a + b
c + d

)
,

and for any vector inR2×1 and for any real numberλ:

λ

(
a
c

)
:=

(
λa
λc

)
.

The nul vector is then
~0 :=

(
0
0

)
.

Example 1.2.5 n The setRn or Mn,1(R) is a vector space.

Example 1.2.6 For any positive integersm andn, the set of matricesRm×n = Mn,m(R) with
n rows andm columns is a vector space.

Example 1.2.7 The set of all real functions defined onR is a vector space if

f + g is the functionx 7→ f(x) + g(x) and

λf is the functionx 7→ λf(x).

1.3 Examples of linear maps

a) f : R → R

Proposition 1.3.1 A function f from R to R is linear if and only if there is a real numbera
such that for any real numberu we have:

f(u) = au
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Proof. If there is such ana, we have

f(u + v) = a(u + v) = au + av = f(u) + f(v),

f(λu) = a(λu) = (aλ)u = (λa)u = λ(au) = λf(u).

Conversely, supposef is linear. Sinceu = 1u = u1, we getf(u) = f(u1) = uf(1) = f(1)u.

Let us puta := f(1), we have for anyu in R: f(u) = au. 2

b) f : R2×1 → R2×1

Proposition 1.3.2 A function f from R2×1 to R2×1 is linear if and only if there is a2 by 2
matrixA such that for any vector~u we have:

f(~u) = A~u.

Proof. First suppose there is such a matrixA. Let us write explicitlyA and two vectors~u and
~v as

A =

(
a b
c d

)
, ~u =

(
u1

u2

)
, ~v =

(
v1

v2

)
.

Then we have

f(~u) = f

(
u1

u2

)
=

(
a b
c d

)(
u1

u2

)
=

(
au1 + bu2

cu1 + du2

)
.

We can check thatf(~u + ~v) = f(~u) + f(~v) explicitly by computing both sides of that equality:

f(~u+~v) = f

((
u1

u2

)
+

(
v1

v2

))
= f

(
u1+v1

u2+v2

)
=

(
a(u1+v1)+b(u2+v2)
c(u1+v1)+d(u2+v2)

)
=

(
au1+bu2+av1+bv2

cu1+du2+cv1+dv2

)

and on the other hand:

f(~u)+f(~v) = f

(
u1

u2

)
+f

(
v1

v2

)
=

(
au1+bu2

cu1+du2

)
+

(
av1+bv2

cv1+dv2

)
=

(
au1+bu2+av1+bv2

cu1+du2+cv1+dv2

)

We have also to check that for any realλ and any vector~u, we havef(λ~u) = λf(~u): the left
side of the equality is in fact

f(λ~u) = f

(
λ

(
u1

u2

))
= f

(
λu1

λu2

)
=

(
aλu1+bλu2

cλu1+dλu2

)
=

(
λ(au1+bu2)
λ(cu1+du2)

)
,

and the right hand side is:

λf(~u) = λf

(
u1

u2

)
= λ

(
au1+bu2

cu1+du2

)
=

(
λ(au1+bu2)
λ(cu1+du2)

)
,

Conversely, iff is linear, let us define
(

a
c

)
:= f

(
1
0

)
,

(
b
d

)
:= f

(
0
1

)
.

Then we can write for any vector~u:

~u =

(
u1

u2

)
= u1

(
1
0

)
+ u2

(
0
1

)
,
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and thus by linearity

f(~u) = f

(
u1

(
1
0

)
+ u2

(
0
1

))
= f

(
u1

(
1
0

))
+ f

(
u2

(
0
1

))
= u1f

(
1
0

)
+ u2f

(
0
1

)

= u1

(
a
c

)
+ u2

(
b
d

)
=

(
u1a
u1c

)
+

(
u2b
u2d

)
=

(
u1a+u2b
u1c+u2d

)
=

(
au1+bu2

cu1+du2

)
=

(
a b
c d

)(
u1

u2

)

2

c) f : R2×1 → R

Proposition 1.3.3 A function f fromR2×1 toR is linear if and only if there is a1 by 2 matrix
(a b) such that for any vector~u we have:

f(~u) =
(
a b

)
~u

Proof. Left as an exercise.2

1.4 Dimension and basis

a) Affine plane versus vector plane

A usual plane such as the blackboard or a sheet of paper gives the image of an affine plane in
which all the elements, called points, play the same role. To get a vector plane we need to have
one element selected. That element will be the null vector~0. In a vector plane the elements are
calledvectors: we can add them using the parallelogram rule. We can also multiply a vector by
a number.

From now on, we will only consider the vector plane. Two vectors~u and~v are calledcollinear
or parallel if ~v = λ~u for some realλ or ~u = µ~v for some realµ.

Notice that~0 is collinear to any vector.

b) Basis

To be able to compute anything we need real numbers. To specify every vector we have to
choose two vectors which are not collinear, let us call them~i and~j. Now any vector~u can
be written as~u = u1

~i + u2
~j and the couple of numbers(u1, u2) is unique: we say that(~i,~j)

is a basisof the vector plane. Once we have a basis of the vector plane, we have a bijection
preserving the operations between the vector plane andR2.

a~i + c~j ←→
(

a
c

)

Therefore the vector plane is oftenidentified with R2.

Since a basis has exactly2 vectors we say that thedimensionof the space is2, dim = 2.



1 SOME WORDS ABOUT LINEAR ALGEBRA 8

c) Matrix associated to a linear map from the vector plane into itself

Let L be a linear map from the vector plane into the vector plane and suppose we have chosen
a basis(~i,~j). The relation~v = L(~u) may be written

v1
~i + v2

~j = L(u1
~i + u2

~j).

SupposeL(~i) = a~i + c~j andL(~j) = b~i + d~j, then:

v1
~i + v2

~j = L(u1
~i + u2

~j) = u1L(~i) + u2L(~j)

= u1(a~i + c~j) + u2(b~i + d~j) = (au1 + bu2)~i + (cu1 + du2)~j

or {
v1 = au1 + bu2

v2 = cu1 + du2

or even better: (
v1

v2

)
=

(
a b
c d

)(
u1

u2

)

We say that the matrix

A :=

(
a b
c d

)

is associatedto the linear mapL relatively to the basis(~i,~j). If we change the basis we get
another matrixA′. Then there is an invertible2× 2 matrixP such thatA andA′ are related by
the equalityA′ = P−1AP .

d) Generalization

Let E be a vector space. A sequence of vectors(e1, e2, . . . , en) is abasisif every vectoru in E
can be written in one and only one way as:

u = u1e1 + u2e2 + . . . + unen.

Since a basis has exactlyn vectors we say that thedimensionof the space isn.

For every linear mapf : E → E there is one square matrix of ordern associated tof relatively
to the basis(e1, e2, . . . , en). If one changes the basis, the matrix is changed following the rule
A′ = P−1AP .



2 Geometrical meanings of determinants

2.1 Determinant of a square matrix

For2×2 matrices ∣∣∣∣
a b
c d

∣∣∣∣ := ad− bc.

The system of 2 linear equations in 2 unknowns(x, y)

{
ax + by = p
cx + dy = q

has a unique solution if and only ifad− bc 6= 0, and the solution is then




x =
pd− bq

ad− bc

y =
aq − pc

ad− bc

2.2 Area of a parallelogram

Let E be a 2-dimensional vector space with basis(~i,~j). We choose as unit area the area of the
parallelogram constructed on~i and~j, that is the parallelogramOPSQ such that

−→
OP =~i,

−→
OS =~i +~j and

−→
OQ = ~j.

Q
S

P0 i

j

Problem 2.2.1 Let ~u and~v be two vectors

~u = a~i + c~j and ~v = b~i + d~j.

What is the area∆ of the parallelogram constructed on~u and~v?

To find∆ we need 3 rules:

Rule 1. If ~u is parallel to~i and~v parallel to~j, that is

~u = a~i and ~v = d~j

then∆ = ad.



2 GEOMETRICAL MEANINGS OF DETERMINANTS 10

j

0 i u = 2i

u+vv = 3j

∆ = 6

Rule 2 (Euclid, about 300 BC). The area of a parallelogram does not change when you let one
side glide on the line on which it is lying

D C D’ C’

A B

DC = D’C’ = AB Area (ABCD) = Area (ABC’D’)

Rule 3. The area is positive if you have to turn in the same direction (to the left or to the right) to
move from~u to ~v as from~i to~j. The area is negative if you have to turn in opposite directions.
Thus the rule 1 is valid even ifa and/ord are negative numbers.

Definition 2.2.2 The oriented area∆ is called the determinant of~u and~v with respect to the
basis(~i,~j) and denoted by

∆ = det
(~i,~j)

(~u,~v).

2.3 Computation ofdet(~i,~j)(~u,~v) when~u = a~i + c~j and ~v = b~i + d~j

i b a

u
j

c

d - bc
a

vd
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First, we use rule 2:

det
(~i,~j)

(~u,~v) = det
(~i,~j)

(~u,~v − b

a
~u)

= det
(~i,~j)

(
a~i + c~j, (d− bc

a
)~j

)
.

Using rule 2 once again (for the other side) we get

det
(~i,~j)

(~u,~v) = det
(~i,~j)

(
a~i, (d− bc

a
)~j

)
.

Then the rule 1 gives us

det
(~i,~j)

(~u,~v) = a (d− bc

a
) det

(~i,~j)
(~i,~j) = ad− bc.

The next Theorem gives a characterisation of the functiondet(~i,~j) : E × E → R.

Theorem 2.3.1 The functiondet(~i,~j) : E × E → R,

(a~i + c~j, b~i + d~j) 7−→ ad− bc

is the only function fromE × E toR such that

(i) For all~u ∈ E the functiondet(~i,~j)(~u, ·) : E → R is linear.

For all~v ∈ E the functiondet(~i,~j)(·, ~v) : E → R is linear.

(ii) For all~u ∈ E holdsdet(~i,~j)(~u, ~u) = 0.

(iii) det(~i,~j)(
~i,~j) = 1.

The (i) means that for any vectors~u, ~v, ~u′ and~v′, and any numbersλ andµ, we have

det
(~i,~j)

(~u, λ~v + µ~v′) = λ det
(~i,~j)

(~u,~v) + µ det
(~i,~j)

(~u,~v′)

det
(~i,~j)

(λ~u + µ~u′, ~v) = λ det
(~i,~j)

(~u,~v) + µ det
(~i,~j)

(~u′, ~v).

Proof. To prove the existence we just have to check that (i), (ii) and (iii) are true. To prove
unicity, we proceed in two steps.

Step 1. For any functionϕ : E × E → R such that (i) holds we have for any vectors~u and~v:

ϕ(~u + ~v, ~u + ~v) = ϕ(~u, ~u) + ϕ(~u,~v) + ϕ(~v, ~u) + ϕ(~v,~v).

If ϕ is such that (ii) holds, we get

0 = 0 + ϕ(~u,~v) + ϕ(~v, ~u) + 0

so that
ϕ(~v, ~u) = −ϕ(~u,~v). (1)

Step 2. Using (i), we get

ϕ(a~i + c~j, b~i + d~j) = ab ϕ(~i,~i) + adϕ(~i,~j) + bc ϕ(~j,~i) + cd ϕ(~j,~j).

From (ii) and (1) we deduce

ϕ(a~i + c~j, b~i + d~j) = (ad− bc)ϕ(~i,~j),

and (iii) shows thatϕ = det(~i,~j). 2
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2.4 Determinant of a linear function from E to E

Lemma 2.4.1 Let E be a 2-dimensional vector space with a basis(~i,~j) and letf : E → E be
a linear function. Then there is a numberδj such that:

∀ ~u ∈ E, ∀~v ∈ E det
(~i,~j)

(f(~u), f(~v)) = δj det
(~i,~j)

(~u,~v). (2)

Proof. Let ϕ : E × E → R be the mapping

(~u,~v) 7−→ ϕ(~u,~v) = det
(~i,~j)

(f(~u), f(~v)).

It easy to check thatϕ satisfies (i) and (ii) of Theorem2.3.1. By the same reasoning as above,
we get:

ϕ(a~i + c~j, b~i + d~j) = (ad− bc) ϕ(~i,~j).

Thus
δf := ϕ(~i,~j) = det

(~i,~j)
(f(~i), f(~j))

is such that (2) holds.2

Interpretation of the Lemma

Applying f we transform a parallelogram constructed on any two vectors~u and~v into a paral-
lelogram constructed onf(~u) andf(~v). The lemma means that the ratio between the areas of
these parallelograms does not depend on the choice of~u and~v, but only onf . The ratio may be
written

δf = det
(~u,~v)

(f(~u), f(~v))

for any couple of independent vectors~u and~v. This justifies the following definition.

Definition 2.4.2 Let f : E → E be linear. The determinant off , denoteddet f or det(f), is
the number independent of the choice of the basis(~i,~j)

det f := det
(~i,~j)

(f(~i), f(~j)).

Remark 2.4.3 Sincedet f is the coefficient which multiplies the areas when we use the trans-
formationf , we have

det(g ◦ f) = det g · det f.

2.5 Two interpretations of the2× 2 matrix determinant

Interpretation 1

Let us denote

A =

(
a b
c d

)
, ~e1 :=

(
1
0

)
, ~e2 :=

(
0
1

)

Then the determinant with respect to the standard basis(~e1, ~e2) of the two column vectors ofA
has the same value as the determinant of the matrixA, provided we preserve their order:

det A =

∣∣∣∣
a b
c d

∣∣∣∣ = det
(~e1,e2)

((
a
c

)
,

(
b
d

))
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Interpretation 2

Let (~i,~j) be a basis of a vector-spaceE. The matrixA is associated to the linear function
f : E → E is defined by

f(~i) = a~i + c~j and f(~j) = b~i + d~j.

Then
det A = det f.

Remark 2.5.1 The relationdet(g ◦ f) = det g · det f will become

det(BA) = det B · det A

for all 2×2 matricesB andA.

We may check this formula explicitly. Let

A =

(
a b
c d

)
and B =

(
a′ b′

c′ d′

)
.

Then

BA =

(
a′a + b′c a′b + b′d
c′a + d′c c′b + d′d

)

and

det(BA) = (a′a + b′c)(c′b + d′d)− (a′b + b′d)(c′a + d′c)

= a′d′ad + b′c′bc− a′d′bc− b′c′ad

= (a′d′ − b′c′)(ad− bc) = det B · det A.

Remark 2.5.2 If we change basis, the matrix associated withf is changed fromA to P−1AP ,
whereP is an invertible (i.e. regular) matrix andP−1 is the inverse ofP . We have as we expect

det(P−1AP ) = det A

since the two numbers are equal todet f . We can check:

det(P−1AP ) = det P−1 · det A · det P

= det P−1 · det P · det A

= det(P−1P ) · det A

= det I · det A

= det A.

2.6 Back to the linear system

We write the system {
ax + by = p
cx + dy = q

as a linear combination
P = xU + yV,
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where

P =

(
p
q

)
, U =

(
a
c

)
and V =

(
b
d

)

To findx andy, just notice that

det
(~e1,~e2)

(P, V ) = det
(~e1,~e2)

(xU + yV, V ) = x det
(~e1,~e2)

(U, V )

and
det

(~e1,~e2)
(U, P ) = y det

(~e1,~e2)
(U, V )

We find the unique solution, wheneverdet(~e1,~e2)(U, V ) = ad − bc 6= 0, is accordance with
Cramer’s rule:

x =

∣∣∣∣
p b
q d

∣∣∣∣
∣∣∣∣
a b
c d

∣∣∣∣
and y =

∣∣∣∣
a p
c q

∣∣∣∣
∣∣∣∣
a b
c d

∣∣∣∣

2.7 Order 3

Determinant of a square matrix of order 3

We define (or remember that)
∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
:= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

Remark 2.7.1 TheSarrus’ ruleis a practical rule for computing determinants of order 3. Use
+ sign in front of the products of factors on a parallel to the main diagonal of the matrix and−
sign for parallels to the other diagonal:

+
a11 a12 a13 a11 a12

... ... ...
a21 a22 a23 a21 a22

... ... ...
a31 a32 a33 a31 a32

−
a11 a12 a13 a11 a12

. .. . .. . ..

a21 a22 a23 a21 a22

. .. . .. . ..

a31 a32 a33 a31 a32

2.8 Oriented volume of a parallelepiped constructed on3 vectors

Suppose thatE is a vector space with base(~i,~j,~k) and let~u, ~v and ~w be vectors inE. The
oriented volume of the parallelepiped constructed on these vectors~u, ~v and ~w is denoted
det(~i,~j,~k) (~u,~v, ~w) if the unit is the volume constructed on the basis.

We may accept the following rules:

Rule 1. det(~i,~j,~k) (a~i, b~j, c~k) = abc.
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Rule 2. The volume of the parallelepiped is not modified when one side is gliding in the plane
in which it lies:

det
(~i,~j,~k)

(~u,~v, ~w + λ~u + µ~v) = det
(~i,~j,~k)

(~u,~v, ~w).

Rule 3. The volume is positive (resp. negative) if(~u,~v, ~w) has the same (resp. opposite) orien-
tation as the basis(~i,~j,~k).

Computed value of the volume is

det
(~i,~j,~k)

(a11
~i + a21

~j + a31
~k, a12

~i + a22
~j + a32

~k, a13
~i + a23

~j + a33
~k) =

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣

Characterisation of the function det(~i,~j,~k) : E3 → R

Theorem 2.8.1 The functiondet(~i,~j,~k) : (~u,~v, ~w) 7−→ det(~i,~j,~k) (~u,~v, ~w) is the only function
from E3 toR such that

(i) the functionsdet(~i,~j,~k) (·, ~v, ~w), det(~i,~j,~k) (~u, ·, ~w) anddet(~i,~j,~k) (~u,~v, ·) are linear

(ii) det(~i,~j,~k) (~u, ~u, ~w) = 0, det(~i,~j,~k) (~u,~v, ~u) = 0 anddet(~i,~j,~k) (~u,~v,~v) = 0

(iii) det(~i,~j,~k) (~i,~j,~k) = 1.

Determinant of a linear function f from E to E

Theorem 2.8.2 Let E be a3-dimensional vector space and letf : E → E be linear. The
number

det f := det
(~i,~j,~k)

(f(~i), f(~j), f(~k))

is independent of the choice of the basis(~i,~j,~k).

Definition 2.8.3 The base invariant numberdet f is called thedeterminantof the linear func-
tion f : E → E (see Theorem2.8.2).

Remark 2.8.4 det f is the multiplication coefficient of volumes when you apply the transfor-
mationf , thus

det(g ◦ f) = det g · det f.

If

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


, and ~e1 :=




1
0
0


, ~e2 :=




0
1
0


, ~e3 :=




0
0
1


,

you can think ofdet A as

det A = det
(~e1,~e3,~e3)







a11

a21

a31


,




a12

a22

a32


,




a13

a23

a33







or as det A = det f , if f is a linear function whose associated matrix isA with respect to some
basis.
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2.9 Solving a system of3 linear equations in3 unknowns

Following the idea of Subsection2.6, let us again write the system




a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

as a linear combination of the columns:

B = x1V1 + x2V2 + x3V3,

where

B =




b1

b2

b3


, V1 =




a11

a21

a31


, V2 =




a12

a22

a32


 and V3 =




a13

a23

a33


.

Notice that
det

(~e1,~e3,~e3)
(B, V2, V3) = x1 det

(~e1,~e3,~e3)
(V1, V2, V3).

Thus, ifV1, V2 andV3 are linearly independent we again get Cramer’s rule

x1 =

∣∣∣∣∣∣

b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣
∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣

, x2 =

∣∣∣∣∣∣

a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣
∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣

, x3 =

∣∣∣∣∣∣

a11 a12 b1

a21 a22 b2

a31 a32 b3

∣∣∣∣∣∣
∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣



3 How to compute determinants of matrices

3.1 One inductive rule

Definition 3.1.1 Let A be a square matrix of ordern ≥ 2. We denote byMA
ij and callminor

matrix ofA indexed byi andj when1 ≤ i ≤ n and1 ≤ j ≤ n, the matrix obtained when you
supress thei-row and thej-column ofA.

If A = (aij)n×n, then

MA
ij =




a11 . . . a1,j−1 a1,j+1 . . . a1n
...

...
...

ai−1,1 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n

ai+1,1 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n
...

...
...

...
an,1 . . . an,j−1 an,j+1 . . . ann




Rule. Let A be a square matrixA = (aij)n×n.

1. If n = 1, thendet(a11) := a11.

2. If n ≥ 2, thecofactorAij of the elementaij of A is

Aij := (−1)i+j det (MA
ij ).

Thedeterminantof A is a numberdet A such that for any rowr and any columnk

det A =
n∑

j=1

arjArj =
n∑

i=1

aikAik.

Remark 3.1.2 If we use the first formula, we say that we are developing the determinant ofA
along the rowr. If we use the second, we develop along the columnk.

Remark 3.1.3 To remember the sign to use, you just have to think of the game chess:



+ − + − + . . .
− + − + −
+ − + − +
− + − + −
+ − + − +

... +




Example 3.1.4 Let

A =

(
a11 a12

a21 a22

)
.

The cofactors areA11 = a22, A12 = −a21, A21 = −a12 and A22 = a11. There are four
possibilities for developingdet A, giving happily the same result.

Developing along the first row:

det A = a11A11 + a12A12 = a11a22 − a12a21,
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along the second row:

det A = a21A21 + a22A22 = −a21a12 + a22a11,

and along the columuns:

det A = a11A11 + a21A21 = a11a22 − a21a12

det A = a12A12 + a22A22 = −a12a21 + a22a11.

Example 3.1.5 Developing along the first row:
∣∣∣∣∣∣

3 0 1
2 −1 0

−4 1 2

∣∣∣∣∣∣
= 3

∣∣∣∣
−1 0

1 2

∣∣∣∣− 0

∣∣∣∣
2 0

−4 2

∣∣∣∣ + 1

∣∣∣∣
2 −1

−4 1

∣∣∣∣ = 3(−2) + (−2) = −8.

Example 3.1.6 Computedet A for

A =




2 −1 0 3
1 3 0 1

−1 2 −1 0
0 −4 1 2


.

Let us develop it along the third column (why?). We get
∣∣∣∣∣∣∣∣

2 −1 0 3
1 3 0 1

−1 2 −1 0
0 −4 1 2

∣∣∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣

2 −1 3
1 3 1
0 −4 2

∣∣∣∣∣∣
− 1

∣∣∣∣∣∣

2 −1 3
1 3 1

−1 2 0

∣∣∣∣∣∣
= −10− 12 = −22.

3.2 Main properties of determinants

Let A = (aij) be an× n square matrix.

1. det(AB) = det A · det B.

2. det(λI) = λn, det(λA) = λn det A for λ ∈ R (order ofA is n).

3. If A is regular, thendet(A−1) = (det A)−1.

4. det AT = det A.

5. For triangular (and diagonal) matrices, the determinant is the product of the elements on
the main diagonal

∣∣∣∣∣∣∣∣∣∣∣

λ1

λ2 ∗
. . .

O λn−1

λn

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

λ1

λ2 O
. ..

∗ λn−1

λn

∣∣∣∣∣∣∣∣∣∣∣

= λ1λ2 . . . λn.

6a. If all the elements of a row are zero, then the determinant is zero.
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6b. If all the elements of a column are zero, then the determinant is zero.

7a. If two rows are proportional, the determinant is zero.

7b. If two columns are proportional, the determinant is zero.

8a. If a row is a linear combination of the others, then the determinant is zero.

8b. If a column is a linear combination of the others, then the determinant is zero.

9. Let B be the matrix deduced fromA by

(i) permutation of two rows (resp. columns), thendet B = − det A.
(ii) multiplication of all the elements of a row (resp. column) by a numberk,
thendet B = k det B.
(iii) addition of the multiple of a line (resp, a columns) to an other, then
det B = det A.

10. If P is a regular matrix, then

det(P−1AP ) = det A.

3.3 Examples

Example 3.3.1
∣∣∣∣∣∣

a a− 1 a + 2
a + 2 a a− 1
a− 1 a + 2 a

∣∣∣∣∣∣
=

∣∣∣∣∣∣

3a + 1 a− 1 a + 2
3a + 1 a a− 1
3a + 1 a + 2 a

∣∣∣∣∣∣
add col 2 and 3 to col 1

= (3a + 1)

∣∣∣∣∣∣

1 a− 1 a + 2
1 a a− 1
1 a + 2 a

∣∣∣∣∣∣
by property 9 (ii)

= (3a + 1)

∣∣∣∣∣∣

1 a− 1 a + 2
0 1 −3
0 3 −2

∣∣∣∣∣∣
= (3a + 1)

∣∣∣∣
1 −3
3 −2

∣∣∣∣ = 7(3a + 1).

Example 3.3.2 Let’s compute

Da,b =

∣∣∣∣∣∣∣∣

1 + a 1 1 1
1 1− a 1 1
1 1 1 + b 1
1 1 1 1− b

∣∣∣∣∣∣∣∣
.

Subtract the second column from the first and after that first row from the result:

Da,b =

∣∣∣∣∣∣∣∣

a 1 1 1
a 1− a 1 1
0 1 1 + b 1
0 1 1 1− b

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a 1 1 1
0 −a 0 0
0 1 1 + b 1
0 1 1 1− b

∣∣∣∣∣∣∣∣
.

Develop along the first column, and then again:

Da,b = a

∣∣∣∣∣∣

−a 0 0
1 1 + b 1
1 1 1− b

∣∣∣∣∣∣
= a(−a)

∣∣∣∣
1 + b 1

1 1− b

∣∣∣∣ = −a2(−b2) = a2b2.
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Example 3.3.3 Compute the determinant of ordern

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1
−1 0 1 · · · 1 1
−1 −1 0 · · · 1 1

...
...

...
. ..

...
...

−1 −1 −1 · · · 0 1
−1 −1 −1 · · · −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Add the first row to all the others, you get a triangular matrix, with only1’s on the diagonal.
ThusDn = 1.

Example 3.3.4 TheVandermondedeterminant.

Let x1, x2,. . ., xn ben real numbers. Compute the polynomial

∆(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2
...

...
...

.. .
...

1 xn x2
n . . . xn−1

n

∣∣∣∣∣∣∣∣∣
.

Since∆ = 0, if xi = xj, we can factorize byxi−xj. It is easy to see that∆ is homogeneous of
degree

0 + 1 + 2 + . . . + (n− 1) =
n(n− 1)

2
.

Thus
∆ = k

∏
i>j

(xi − xj)

wherek is a constant. We determinek by considering the coefficient ofx2x
2
3 . . . xn−1

n which
is 1. So finally we get

∆ =
∏
i>j

(xi − xj).

Example 3.3.5 TheHilbert determinant.

Let us compute

Hn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1

1
2

1
3

. . . 1
n

1
2

1
3

1
4

. . . 1
n+1

1
3

1
4

1
5

...
...

. . .
...

1
n

1
n+1

1
n+2

. . . 1
2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
Substract the last row from the others:

Hn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n−1
n

n−1
2(n+1)

n−1
3(n+2)

. . . n−1
n(2n−1)

n−2
2n

n−2
3(n+1)

n−2
4(n+2)

. . . n−2
(n+1)(2n−1)

n−3
3n

n−3
4(n+1)

n−3
5(n+2)

...
...

.. .
...

1
(n−1)n

1
n(n+1)

1
(n+1)(n+2)

. . . 1
(2n−2)(2n−1)

1
n

1
n+1

1
n+2

. . . 1
2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
(n− 1)!

n(n + 1) . . . (2n− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
2

1
3

. . . 1
n

1
2

1
3

1
4

. . . 1
n+1

1
3

1
4

1
5

...
...

. ..
...

1
n−1

1
n

1
n+1

. . . 1
2n−2

1 1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Substract the last column from the others:

Hn =
(n− 1)!

n(n + 1) · · · (2n− 1)

(n− 1)!

n(n + 1) · · · (2n− 2)
Hn−1

=
n∏

j=1

1

2j − 1

((j − 1)!)4

((2j − 1)!)2

We get the following numbers

H1 = 1, H2 =
1

12
, H3 =

1

180
· 1

12
=

1

2160
, H4 =

1

2800
· 1

2160
=

1

6048000
, . . .

We notice thatHn becomes very small, even compared to the values of the elements of the
matrix; it is very useful for testing numerical methods, because this matrix is very unstable with
respect to the values of its elements.



4 Definitions and proofs

4.1 Determinant of vectors with respect to a basis

Vocabulary and notations

Definition 4.1.1 We define a numberεi1i2...in depending on its indices as follows.

εi1i2...in is equal to0, 1 or−1 according to the following conditions:

εi1i2...in = 0 if two of the indices are equal,
εi1i2...in = 1 if {i1, . . . , in} = {1, . . . , n} and an evennumber of

transpositions are needed to reorderi1 i2 . . . in into 1 2 . . . n,
εi1i2...in = −1 if {i1, . . . , in} = {1, . . . , n} and an oddnumber of

transpositions are needed to reorderi1, i2 . . . in into 1 2 . . . n.

Example 4.1.2 ε12 = 1, ε21 = −1 andε11 = ε22 = 0

ε123 = ε231 = ε312 = 1 andε132 = ε321 = ε213 = −1

ε112 = ε113 = ε111 = ε212 = . . . = 0

ε45132 = ε14532 = −ε12453 = −ε12345 = −1.

Let Sn be the set of bijections of{1, . . . , n} on{1, . . . , n}, i.e.

Sn := {σ : {1, . . . , n} → {1, . . . , n} | σ bijection}.
Sn is called thesymmetric group of ordern. The elements ofSn are calledpermutations.

If σ ∈ Sn, we denoteσi := σ(i) for i = 1, 2, 3, . . . , n. Note that ifσ ∈ Sn, then, by bijectivity,
εσ1σ2...σn cannot be zero and belongs to{1, −1}.
Remember Cartesian product: IfE is a set,En := E × E × . . . × E is the set ofn-uples
(v1, v2, . . . , vn), wherev1 ∈ E, v2 ∈ E, . . ., vn ∈ E.

Definition 4.1.3 Let E be a vector space, and consider a functionϕ : En → R. We use the
following terminology:

1. ϕ is multilinear if for all k in {1, . . . , n} we have

ϕ(v1, . . . , vk−1, λu + µw, vk+1, . . . , vn) = λϕ(v1, . . . , vk−1, u, vk+1, . . . , vn)

+µϕ(v1, . . . , vk−1, w, vk+1, . . . , vn).

2. ϕ is alternateif for all k andh distinct

ϕ(v1, . . . , vk−1, u, vk+1, . . . , vh−1, u, vh+1, . . . , vn) = 0.

3. ϕ is antisymmetricif for all k andh distinct

ϕ(v1, . . . , vk−1, u, vk+1, . . . , vh−1, w, vh+1, . . . , vn)

= −ϕ(v1, . . . , vk−1, w, vk+1, . . . , uh−1, u, vh+1, . . . , vn).

Proposition 4.1.4 If ϕ is multilinear and alternate then it is antisymmetric.

Proof. 0 = det(. . . , u + v, . . . , u + v, . . .) = det(. . . , u, . . . , v, . . .) + det(. . . , v, . . . , u, . . .) 2
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Theorem 4.1.5 Let E be a vector space of dimensionn and let(e1, . . . , en) be a basis ofE.
For any numberλ there is a unique functionϕ : En → R such that:

(i) ϕ is multilinear,

(ii) ϕ is alternate,

(iii) ϕ(e1, . . . , en) = λ.

If for j ∈ {1, . . . , n} we havevj =
∑n

i=1 aijei, then

ϕ(v1, v2, . . . , vn) = ϕ(e1, e2, . . . , en)
∑
σ∈ϕn

εσ1σ2...σnaσ11, aσ22 . . . aσnn.

Proof. Let vj =
∑n

i=1 aijei for j = 1, 2, . . . , n. Then

ϕ(v1, v2, . . . , vn) = ϕ
( n∑

i1=1

ai11 ei1 ,

n∑
i2=1

ai22 ei2 , . . . ,

n∑
in=1

ainn ein

)
.

Let us suppose thatϕ is multilinear. Then

ϕ(v1, v2, . . . , vn) =
n∑

i1=1

n∑
i2=1

. . .

n∑
in=1

ai11ai22 . . . ainnϕ(ei1 , ei2 , . . . , ein).

Let us suppose thatϕ is also alternate; thenϕ(ei1 , ei2 , . . . , ein) = 0 unless there is
σ ∈ Sn such thati1 = σ1, i2 = σ2, . . . , in = σn. And since

ϕ(eσ1 , eσ2 , . . . , eσn) = εσ1σ2...σnϕ(e1, e1, . . . , en),

we may factorize byϕ(e1, e2, . . . , en) getting the last formula of the theorem. If we choose
ϕ(e1, e2, . . . , en) = λ, the functionϕ is determined. To finish the proof we just have to check
that the function defined in that way have the properties (i), (ii) and (iii).2

Definition 4.1.6 The functionϕ such thatλ = 1 is denoteddet(e1,...,en) and the image of
(v1, . . . , vn) by that functiondet(e1,...,en)(v1, . . . , vn) is called thedeterminant of the vectors
v1, . . . , vn with respect to the basis(e1, . . . , en).

Remark 4.1.7 We may define the hypervolume in the spaceE of the generalized parallelepiped
constructed onv1, v2, . . . vn asdet(e1,...,en)(v1, . . . , vn) when we take as unit the hypervolume of
the generalized parallelepiped constructed one1, . . . , en.

Corollary 4.1.8 If (e1, . . . , en) is a basis of then-dimensional vector spaceE, and ifϕ : En →
R is multilinear and alternate, then

ϕ = ϕ(e1, . . . , en) det
(e1,...,en)

,

that is to say that for every(u1, . . . , un) in En:

ϕ(u1, . . . , un) = ϕ(e1, . . . , en) det
(e1,...,en)

(u1, . . . , un).

Proof. The assertion follows imediately from the theorem and the definition ofdet(e1,...,en). 2
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Corollary 4.1.9 If (e1, . . . , en) and(v1, . . . , vn) are two basis ofE, then

det
(e1,...,en)

(v1, . . . , vn) · det
(v1,...,vn)

(e1, . . . , en) = 1.

Proof. Since(v1, . . . , vn) is a basis,ϕ = det(v1,...,vn) is multilinear and alternate, thus:

det
(v1,...,vn)

(u1, . . . , un) = det
(e1,...,en)

(u1, . . . , un) · det
(v1,...,vn)

(e1, . . . , en).

For (u1, . . . , un) = (v1, . . . , vn), we get the expected formula.2

Corollary 4.1.10 Let (e1, . . . , en) be a basis of ann-dimensional vector spaceE. Then: anyn
vectorsv1, v2, . . ., vn are linearly independent if and only ifdet(e1,...,en) (v1, . . . , vn) 6= 0.

Proof. One side with contradiction: Ifv1, v2, . . ., vn are linearly dependent, at least one of the
vectors is a linear combination of the others, and sincedet(e1...en) is multilinear and alternate
det(e1,...,en) (v1, . . . , vn) = 0.

On the other hand, ifv1, v2, . . ., vn are linearly independent, they form a basis and thus from
Corollary4.1.9we havedet(e1,...,en) (v1, . . . , vn) 6= 0. 2

4.2 Determinant of a linear map from E to E

Theorem and Definition 4.2.1 Let E be a vector space of dimensionn and letf : E → E be
linear. The numberdet(e1,...,en) (f(e1), . . . , f(en)) is independent of the basis(e1, . . . , en) of E.
This number is called thedeterminantof f and denoted bydet f :

det f := det
(e1,...,en)

(f(e1), . . . , f(en)).

Proof. Let (e1, . . . , en) and(v1, . . . , vn) be two basis ofE. We have

det
(e1,...,en)

(v1, . . . , vn) 6= 0. (3)

For simplicity, we putdete v := det(e1,...,en)(v1, . . . , vn).

Since(e1, . . . , en) is a basis and the mappingEn → R,

(u1, . . . , un) 7−→ det
e

(f(u1), . . . , f(un)),

is multilinear and alternate, the Corollary4.1.8gives: for all(u1, . . . , un) ∈ En

det
(e1,...,en)

(f(u1), . . . , f(un)) = det
(e1,...,en)

(f(e1), . . . , f(en)) · det
(e1,...,en)

(u1, . . . , un).

And then for(u1, . . . , un) = (v1, . . . , vn):

det
(e1,...,en)

(f(v1), . . . , f(vn)) = det
e

v · det
(e1,...,en)

(f(e1), . . . , f(en)). (4)

Since(v1, . . . , vn) is a basis and the mappingEn → R,

(u1, . . . , un) 7−→ det
e

(u1, . . . , un)
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is multilinear and alternate, the Corollary4.1.8gives: for all(u1, . . . , un) ∈ En

det
(e1,...,en)

(u1, . . . , un) = det
e

v · det
(v1,...,vn)

(u1, . . . , un).

And thus for(u1, . . . , un) = (f(v1), . . . , f(vn)) we have:

det
(e1,...,en)

(f(v1), . . . , f(vn)) = det
e

v · det
(v1,...,vn)

(f(v1), . . . , f(vn)) (5)

From the equations (3), (4) and (5) we get then:

det
(e1,...,en)

(f(e1), . . . , f(en)) = det
(v1,...,vn)

(f(v1), . . . , f(vn)).

2

Corollary 4.2.2 Let f : E → E be linear. Thendet f 6= 0 if and only if f is bijective.

Proof. A linear functionf from a linear space of dimensionn into a linear space of same
dimension, is bijective if and only if it is surjective, that is if and only if the images of basis
vectorsf(e1), . . . , f(en) are linearly independent, or

det f = det
(e1,...,en)

(f(e1), . . . , f(en)) 6= 0.

2

Proposition 4.2.3 If f : E → E andg : E → E are linear, then

det(g ◦ f) = det g · det f.

Proof. If f is not bijective, theng ◦ f is not bijective and both sides of the equality are zero.

If f is bijective,f(e1), . . . , f(en) is a basis for any basise1, . . . , en and

det(g ◦ f) = det
(e1,...,en)

(g(f(e1)), . . . , g(f(en)))

= det
(f(e1),...,f(en))

(g(f(e1)), . . . , g(f(en))) · det
(e1,...,en)

(f(e1), . . . , f(en))

= det g · det f.

2

4.3 Determinant of a square matrix

Definition 4.3.1 Let A be a square matrix of ordern. We denote the elements ofA by aij for
1 ≤ i ≤ n, 1 ≤ j ≤ n. Thedeterminantof A, denoted bydet A, is the number

det A :=
∑
σ∈Sn

εσ1σ2...σnaσ11aσ22 . . . aσnn,

whereSn is the set of all permutations of{1, 2, 3, . . . , n}.
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Proposition 4.3.2 The determinant of a matrix and the determinant of its column vectors with
respect to the natural basis(e1, . . . , en) are the same:

det A = det
(e1,...,en)







a11

a21
...

an1


,




a12

a22
...

an2


, . . . ,




a1n

a2n
...

ann







Proof. A direct consequence of Theorem4.1.5and Definition4.1.6. 2

Proposition 4.3.3 SupposeE is a vector space of dimensionn. Letf : E → E be linear and let
(e1, . . . , en) be a basis ofE. The matrixA associated withf relatively to the basis(e1, . . . , en)
is such that:

det A = det f.

Proof. The elementsaij are such thatf(ej) =
∑n

i=1 aijei. Then

det A = det
(e1...en)

(f(e1), . . . , f(en)) = det f.

2

Corollary 4.3.4 If A andB are square matrix of ordern, then

det(AB) = det A · det B.

Proof. Let A be associated withf , andB with g relatively to some basis. Then

det(BA) = det(g ◦ f) = det g · det f = det B · det A.

2

Proposition 4.3.5 If A is a square matrix then

det AT = det A.

Proof. Let us write sgn(σ) := εσ1σ2...σn , whenσ ∈ Sn. Notice that the functionSn → Sn,
τ 7→ τ−1, is bijective and sgn(τ) = sgn(τ−1). Thus:

det A =
∑
σ∈Sn

sgn(σ) aσ1 1 . . . aσn n =
∑
σ∈Sn

sgn(σ) a1 σ−1
1

. . . an σ−1
n

=
∑
τ∈Sn

sgn(τ−1) a1 τ1 . . . an τn =
∑
τ∈Sn

sgn(τ) a1 τ1 . . . an τn = det AT .

An alternate proof is to writeA = PTQ, with AT = QT T T P T , whereP is a product of
Gaussian process matrices with determinant±1, Q is a permutation matrix with determinant
±1 andT triangular. Then

det AT = det QT T T P T = det QT · det T T · det P T

= det Q · det T · det P = det P · det T · det Q = det(PTQ) = det A.

2
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4.4 A beautiful formula

Definition and Proposition 4.4.1 Let A be a square matrix of ordern. We denote its elements
by aij. Theminor matrixMA

ij is the matrix obtained by supressing the rowi and the column
j of the matrixA. The determinantAij = det(MA

ij ) is called thecofactorof the elementaij.
The matrix whose element areAij is thecofactor matrix, and the transposed matrix is called the
adjoint matrixof A and denoted by adjA. Thus( adjA)ij = Aji. Then:

A adjA = ( adjA)A = (det A)I.

Proof. Sincedet A =
∑

σ∈Sn
εσ1...σn a1 σ1 · · · an σn, we get

det A =
n∑

i=1

akiAki = (A( adjA))kk.

If we compute
∑n

i=1 akiAji we get the determinant of a matrix with two equal columns and then
(A( adjA))jk = 0 if j 6= k. Thus the formula.2

Corollary 4.4.2 The matrixA is invertible (regular) if and only ifdet A 6= 0. If det A 6= 0,
then:

A−1 =
1

det A
adjA.

If det A = 0, A is not invertible, because if it was there would be a matrixB such thatAB = I,
and thendet A · det B = 1, sodet A = 0 would be impossible.

4.5 Linear systems

Theorem 4.5.1 Let us consider the following vectors and matrices:

V1 =




a11
...

an1


, V2 =




a12
...

an2


, . . . , Vn =




a1n
...

ann


,

A :=
(
V1 . . . Vn

)
=




a11 . . . a1n
...

...
an1 . . . ann


, B =




b1
...
bn


.

The linear system ofn equations inn unknownsx1, x2, . . ., xn:




a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

an1x1 + an2x2 + · · · + annxn = bn

has a unique solution if and only ifdet A 6= 0.

Whendet A 6= 0, the solution is given for everyxk by

xk =
det

(
V1 . . . Vk−1 B Vk+1 . . . Vn

)

det A
.
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Proof. Let us write the system as

B = x1V1 + x2V2 + . . . + xnVn.

1) If det A = 0, the vectorsV1, . . . , Vn are linearly dependent and do not generateRn. If B
does not belong to the subspace generated byV1, . . . ,Vn, then the system has no solutions. IfB
belongs to that subspace then there are scalarsξk such that

B = ξ1V1 + . . . + ξnVn,

and this means that the vectorξ := (ξ1 . . . ξn) is a solution. We have to show that there are even
more solutions. But by linear dependence there is a non-zero vectorλ := (λ1 . . . λn) such that

λ1V1 + . . . + λnVn = 0,

which implies that alsoξ + λ 6= ξ is a solution.

2) If det A = 0, the vectorsV1, . . . , Vn are linearly independent and generateRn, especially
the decompositionB = ξ1V1 + . . . + ξnVn is unique. Sincedet(V1 . . . Vn) is multilinear and
alternate, we have

det
(
V1 . . . Vk−1 B Vk+1 . . . Vn

)
= xk det

(
V1 . . . Vk−1 Vk Vk+1 . . . Vn

)

= xk det A.

2


