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I would like to give a brief history of linear algebra and, especially, matrices. The
subject is relatively young. Excluding determinants, its origins lie in the nineteenth
century. Most interestingly, many of the advances in the nineteenth century came
from non-mathematicians.

Matrices and linear algebra did not grow out of the study of coefficients of
systems of linear equations, as one might guess. Arrays of coefficients led mathe-
maticians to develop determinants, not matrices. Leibnitz, co-inventor of calculus,
used determinants in 1693 about one hundred and fifty years before the study of
matrices in their own right. Cramer presented his determinant-based formula for
solving systems of linear equations in 1750. The first implicit use of matrices
occurred in Lagrange’'s work on bilinear forms in the late 18th century. His
objective was to characterize the maxima and minima of functions of several real
variables. Besides requiring the first derivatives to be zero, he needed a condition
on the matrix of second derivatives: the condition was positive definiteness or
negative definiteness (although he did not use matrices).

Gauss developed Gaussian elimination around 1800, to solve least squares
problems in celestial computations and later in geodetic computations. It should
be noted that Chinese manuscripts from several centuries earlier have been found
that explain how to solve a system of three equations in three unknowns by
‘Gaussian’ elimination. Gaussian elimination was for years considered part of the
development of geodesy, not mathematics. Gauss-Jordan elimination’s first appear-
ance in print was in a handbook on geodesy by Wilhelm Jordan. The name Jordan
in Gauss-Jordan elimination does not refer to the famous mathematician Camille
Jordan, but rather to the geodesist Wilhelm Jordan. (Most linear algebra texts
mistakenly identified Gauss-Jordan elimination with the mathematician Jordan,
until a 1987 article in the American Mathematical Monthly by Athloen
and McLaughlin [1], motivated by a historical talk by this author’s father,
A. W. Tucker, set the record straight.)

For matrix algebra to develop, one needed two things: the proper notation and
the definition of matrix muitiplication. Interestingly both these critical factors
occurred at about the same time, around 1850, and in the same country, England.
‘Except for Newton’s invention of calculus, the major mathematical advances in the
1600s, 1700s and early 1800s were all made by Continental mathematicians, such as
Bernoulli, Cauchy, Euler, Gauss, and Laplace. But in the mid-1800s, English
mathematicians pioneered the study of various algebraic systems. For example,
Augustus DeMorgan and George Boole developed the algebra of sets (Boolean
algebra) in which symbols were used for propositions and abstract elements.

The introduction of matrix notation and the invention of the word matrix were
motivated by attempts to develop the right algebraic language for studying deter-
minants. In 1848, J. J. Sylvester introduced the term “matrix,” the Latin word for
womb, as a name for an array of numbers. He used womb, because he viewed a
matrix as a generator of determinants. That is, every subset of k rows and k
columns in a matrix generated a determinant (associated with the submatrix
formed by those rows and columns).

Matrix algebra grew out of work by Arthur Cayley in 1855 about linear

transformations. Given transformations,
Ty: x'=ax +by Ty x"=ax'+ By
Y =cx+dy Y =yx'+38y,
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he considered the transformation obtained by performing 7, and then per- '

forming T,.
T,T,: x" = (aa +Bc)x + (ab+Bd)y
y'=(ya+8c)x+ (yb+éd)y.

In studying ways to represent this composite transformation, he was led 0 define
matrix multiplication: the matrix of coefficients for the composite transformation
T,T, is the product of the matrix for T, times the matrix for T,. Cayley went on to
study the algebra of these compositions—matrix algebra—including matrix in-
verses. In his 1858 Memoir on the Theory of Matrices, Cayley gave the famous
Cayley-Hamilton theorem: a square matrix satisfies its characteristic equation. The
use of a single symbol A to represent the matrix of a transformation was essential
notation of this new algebra. A link between matrix algebra and determinants was
quickly established with the result det(4B) = det(A)det(B). But Cayley seemed to
have realized that matrix algebra might grow to overshadow the theory of determi-
nants. He wrote, “There would be many things to say about this theory of matrices
which should, it seems to me, precede the theory of determinants.”

It is a curious sidelight to this discussion that another prominent English
mathematician of this time was Charles Babbage who built the first modern
calculating machine. Abstracting the mechanics of computation as well as its
algebraic structure and notation (and DeMorgan’s work on the algebra of sets
which would later be crucial in computer science) seemed to be all part of the
same general intellectual pattern in England in the mid-nineteenth century.

Mathematicians also tried to develop an algebra of vectors but there was no
natural general definition for the product of two vectors. The first vector algebra,
involving a noncommutative vector product, was proposed by Hermann
Grassmann’s first Ausdehnungslehre (1844). This text also introduced column-row
products, what are now called simple matrices or rank-one matrices (formed by
matrix multiplication of a column vector times a row vector). The famous treatise
on vector analysis by the late 19th-century American mathematical physicist J.
Willard Gibbs developed vector and matrix theory further [6), including represen-’
tations of general matrices, which he called dyadics, as a sum of simple matrices, -
which Gibbs called dyads. Later the physicist P. A. M. Dirac introduced the term
“bra-ket” for what we now call the scalar product of a “bra” (row) vector times a
“ket” (column) vector, while the term “ket-bra” referred to the product of “ket”
(column) times “bra” (row), yielding what we call here a simple matrix. (Physicists
in the 20th century developed the convention of assuming any vector was implicitly;,
a column vector with a row vector represented as the transpose of a column’
vector.)

Matrices remained closely associated with linear transformations and, from the
theoretical viewpoint, were by 1900 just a finite-dimensional subcase of an emerg-
ing general theory of linear transformations. Matrices were also viewed as a
powerful notation, but after an initial spurt of interest in the nineteenth century
were little studied in their own right. More attention was paid to vectors, which are
basic mathematical elements of physics as well as many areas of mathematics. The
modern definition of a vector space was introduced by Peano in 1888. Abstract
vector spaces, whose elements were functions or linear transformations, soon
followed.

Interest in matrices, with emphasis on their numerical analysis, re-emerged after :
World War II with the development of modern digital computers. In 1947, John
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[image: image2.jpg]von Neumann and Herman Goldstine introduced condition numbers in analyzing
round-off error. Alan Turing, the other giant (with von Neumann) in the develop-
ment of stored-program computers, introduced the LU decomposition of a matrix
in 1948. The usefulness of the QR decomposition was realized a decade later. The
most important contributor in this effort was J. H. Wilkinson, who, among other
achievements, showed the stability of Gaussian elimination, still the best way
known to solve a system of linear equations. See [4), [9] for information about the
foundations of numerical linear algebra.
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Linear al'gebra stands today as the epitome of accessible, yet powerful mathemati-
cal theory. Linear algebra has many appealing facets which radiate in different
directions. In the 1960s, linear algebra was positioned to be the first real mathe-
matics course in the undergraduate mathematics curriculum in part because its
theory is so well structured and comprehensive, yet requires limited mathematical
prerequisites. A mastery of finite vector spaces, linear transformations, and their
extensions to function spaces is essential for a practitioner or researcher in most
areas of pure and applied mathematics. Linear algebra is the mathematics of our
modern technological world of complex multivariable systems and computers.

‘The 'advent of digital computers in the last forty years has eliminated the tedium
of the extensive computations associated with linear systems. With computers,
linear models such as linear programming and linear regression are now used to
organize and optimize virtually all business activities from street-sweeping to
market research to controlling oil refineries. While mathematical methods—prin-
cipally calculus-based analysis—were once largely restricted to the physical sci-
ences, tools of linear algebra find use in almost all academic fields and throughout
modern society. The interaction with modern computation is especially appealing:
previously, theory was needed to give analytic answers since explicit computation
was hopelessly tedious; nowadays, theory is used to guide increasingly complex
computations. As noted below, crucial developments in matrix theory and auto-
mated computations have occurred hand-in-hand ever since the term ‘matrix’ was
coined by J. J. Sylvester in 1848.

There is an even more pervasive practical side of linear algebra. Stated in
starkest terms, linear problems are solvable while nonlinear problems are not. Of
course, some nonlinear problems with a small number of variables can be solved,
but 99.99% of multivariable nonlinear problems can be solved only by recasting
them as linear systems. For example, finitc element and finite difference schemes
for solving partial differential equations in the end rely on solving systems of n
linear equations in n variables.

The theoretical status of linear algebra is as important as its applicability and its
role in computation. Vector spaces and linear transformations are central themes
of much of mathematics. The fact that differentiation is a linear operator lies at
the heart of the power of calculus and differential equations. Of course, the very

definition of the derivative concerns linearity: the slope of a tangent line—a local
linear approximation—of a function. Fourier series arise from one orthogonal
basis for the vector space of continuous functions. Most of functional analysis,
especially topics such as Hilbert spaces and Fourier analysis, are part of the linear
mathematics which grows naturally out of the concept of a vector space of
functions introduced in sophomore linear algebra courses.

The pedagogical virtues of an introductory linear algebra course are just as
impressive as the subject’s usefulness and central role in higher analysis. Linear
algebra gives a formal structure to analytic geometry and solutions to 2 X 2 and
3 X3 systems of linear equations learned in high school. A vector space is the
natural choice for a first algebraic system for students to study formally because its
properties are all part of students’ knowledge of analytic geometry. Unlike groups
and fields, one can draw insightful pictures of elements in vector spaces. Linear
transformations on (finite-dimensional) vector spaces also have concrete descrip-
tions with matrices.

Matrix algebra generalizes the single-variable algebra of high school mathemat-
ics to give a very striking demonstration of the power of algebraic notation. For a
simple example, the matrix equation p'®=A4'"p for the population p® in the .
10th period of a growth model presents a relationship between entries in p'”and -
in p that is far too complex to write out explicitly. Matrix algebra is the standard
language for much of applied mathematics. For example, the least squares solution
to a system of equations Ax =b is given by the matrix expression (A74)~'4"b,
and, building on this, the basic projection step in Karmarkar’s algorithm for linear
programming is given by the matrix expression (/ = A(A”4)~'AT). (Note that in
parallel with the ‘low-level’ and ‘high-level’ languages for programming computers,
matrix algebra has a low-level, e.g., ¢;j=La;b,;, and a high-level, e.g., C = 4B,
notational language.)

Linear algebra takes students’ background in Euclidean space and formalizes it
with vector space theory that builds on algebra and the geometric intuition
developed in high school. Then this comfortable setting is shown to apply with
unimagined generality, producing vector spaces of functions and more. Similarly,
the easy-to-follow linear transformations on Euclidean space described through
matrices generalize to linear operators on function spaces.

Linear algebra is also appealing because it is so powerful yet simple. There is a
satisfying theoretical answer to almost any question a student can pose in linear
algebra, The theory also leads directly to efficient computation. Even when a
system of equations Ax =b has no solution (say, when A has more rows than
columns and b is not in the range of A), linear algebra provides the pseudo-inverse
to find a closest (least-squares) approximate solution. A first course in linear
algebra contains beautiful classification theorems, such as the fact that every
k-dimensional real vector space is isomorphic to R*.

A further pedagogical strength of linear algebra is that it joins together methods
and insights of geometry, algebra, and analysis; examples of these connections
abound in the articles in this special issue of the College Mathematics Journal. This
combination of contributing fields plus the powerful framework of vector spaces
and linear transformations allows a sophomore course in linear algebra to define
the ground rules for much of higher analysis, advanced geometry, statistics,
operations research, and computational applied mathematics. For example, one of
these ground rules is that it suffices to understand the action of a linear transfor-
mation on a set of basis functions and then let linearity do the rest.

Linear algebra really is a model for what a mathematical theory should be!




