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Chapitre 1

Regular convex polyhedra

1.1 Vocabulary
Definition. A subset D of a plane P or of the three-dimensional space E is convex if

8M 2 D 8N 2 D .segment MN/ � D

Counter-examples and examples.

Non convex subset of P Convex subset of P

M
N

A disc is convex, but a ring is not. In space the inside of a sphere, called a ball, is convex. The inside of
a cube is convex, but a torus (shape of a doughnut) is not.

Harjoitus 1. Show that the intersection of a family of convex subsets of P (respectively E) is convex.
Proposition and definition. Let A be a subset of a plane P (or of space E). There is a subset H
of P (respectively E) which is the smallest (relatively to the inclusion relation) of all convex subsets
containing A. This subset H is called the convex hull of A.
Proof. The plane P is a convex subset of P containing A. Thus the family of convex subsets of P
containing A is not empty. It follows from the exercise above that the intersection H of all the subsets
of this family is a convex subset containing A. The subset H is included in all the convex subsets
containing A, thus it is the smallest.
Comment. There are plenty of definitions of polygons and polyhedra. We give here definitions for
convex polygons and polyhedra, which are easyly generalized to any dimension.
Definition. A convex polygon … is the convex hull of a finite set M of points in a plane, which are
not on one line. Let V be the smallest subset of M such that the convex hull of V is …. The points
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4 CHAPITRE 1. REGULAR CONVEX POLYHEDRA

belonging to V are called the vertices of …. Let Ai and Aj be two distinct vertices, the segment AiAj
is a diagonal of … if there are points belonging to V on both sides of the line AiAj ; the segment AiAj
is an edge or side of… if all the points belonging to V are in one of the two half-planes bordered by the
line AiAj .

A triangle has 3 vertices, 3 sides or edges and no diagonal.
A quadrangle has 4 vertices, 4 sides or edges and 2 diagonals.
A pentagon has 5 vertices, 5 sides or edges and 5 diagonals.
An hexagon has 6 vertices, 6 sides or edges and 9 diagonals.
An heptagon has 7 vertices, 7 sides or edges and 14 diagonals.
An octogon has 8 vertices, 8 sides or edges and 20 diagonals.
An nonagon has 9 vertices, 9 sides or edges and 27 diagonals.
An decagon has 10 vertices, 10 sides or edges and 35 diagonals.

An n-gon has n vertices, n sides or edges and n.n�3/

2
diagonals.

Notation. The vertices of an n-gon may be denoted by letters indexed from 1 to n : A1, A2, : : : , An in
such a way that the sides are the segments A1A2, : : : , An�1An and AnA1. We then denote the polygon
by the finite sequence of its vertices … D A1A2 : : : An.
Definition. A convex polygon … D A1A2 : : : An is regular if all its sides are of equal length

A1A2 D A2A3 D � � � D An�1An D AnA1

and all the angles 3AnA1A2, 3A1A2A3, : : : , 6An�2An�1An, 4An�1AnA1have same measure.

�n D3AnA1A2 D � � � D 4An�1AnA1

60° 90° 108° 120° 128,57° 135° 140° 144°

3 4 5 6 7 8 9 10

Definition. A convex polyhedron … is the convex hull of a finite set M of points in space, which are
not on one plane. Let V be the smallest subset of M such that the convex hull of V is …. The points
belonging to V are called the vertices of …. A face of the convex polyhedron … is the convex hull of a
subset F of V such that :

1. all the points belonging to F are in one plane ; we denote it by P ;

2. F is the set of all the points belonging to V which are in the plane P ;

3. all the points belonging to V are in one of the two half-spaces bordered by P .

The sides of the faces are the edges of the polyhedron.
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Definition. A convex polyhedron … is regular if all its faces are isometric regular convex polygons
and each vertex is common to as many faces. It is described by a Schläfli symbol fp; qg where p is the
number of sides of the faces and q is the number of faces at each vertex. For instance the cube has the
symbol f4; 3g.

There are 5 regular convex polyhedra or platonic solids :

1. The tetrahedron with Schläfli-symbol f3; 3g.

2. The cube with Schläfli-symbol f4; 3g.

3. The octahedron with Schläfli-symbol f3; 4g.

4. The dodecahedron with Schläfli-symbol f5; 3g.

5. The icosahedron with Schläfli-symbol f3; 5g.

Harjoitus 2. Sketch the five platonic solids here :

Name Schläfli-symbol Faces F E V F �E C V

regular tetrahedron f3; 3g Triangles 4 6 4 ?
cube f4; 3g Squares 6 12 8 ?

regular octahedron f3; 4g Triangles 8 12 6 ?
regular dodecahedron f5; 3g Pentagons 12 30 20 ?
regular icosahedron f3; 5g Triangles 20 30 12 ?
F is the number of faces, E the number of edges and V the number of vertices.

If you take as vertices of a polyhedron …0 the centers of the faces of a regular convex polyhedra …
you get a regular convex polyhedra called the dual of…. The tetrahedron is his own dual. The cube and
the octahedron are dual. The dodecahedron and the icosahedron are dual. If … has the Schläfli-symbol
fp; qg, the Schläfli-symbol of the dual …0 of … is fq; pg.

Harjoitus 3. What is a regular hexahedron ? Answer : a cube !

Harjoitus 4. In a triangle the heights are meeting in a point called the orthocenter. How do you ge-
neralize this property to a regular tetrahedron ? Is it true for all tetrahedra ? A tetrahedron is called
orthocentric if opposite edges are orthogonal ; why ?
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1.2 Euler’s formula

1.2.1 The theorem
The following definition of a graph is enough for what we want to prove here. More about graphs in

chapter 3.
Definitions. A graph G is a couple G D .V ;E/, where V is a finite set and E is a subset of all the
subsets of V having 2 elements. The elements of V are called vertices and the elements of E are called
edges of G.

A graph is connected if for any two vertices M and N , there is a sequence of vertices A0, A1, : : : ,
An such that

– for all i from 1 to n the subset fAi�1; Aig is an edge
– A0 DM

– An D N .
A graph G D .V ;E/ is planar if it is possible to represent each vertex M by a point M in a plane

P and each fM;N g by a continuous line denoted MN with ends M and N in such a way that :

if two curvesMN andM 0N 0 have a point in common than
this point is a common endpoint to MN and M 0N 0.

Example and counter-example. The complete graph of order n, called K5, is defined by Kn D .V ;E/,
where V has n elements and E is the set of all the subsets of V having 2 elements. Here is a represen-
tation of K5 :

The graph K4 is planar but K5 is not.

Harjoitus 5. Draw a picture that shows that K4 is a planar graph.

Harjoitus 6. Draw pictures representing K1, K2, K3 and K4. In each case count the number of faces
F , the number of edges E and the number of verices V , and verify the Euler formula F �E C V D 2.
Hint. Do not forget to count the face which is the part of the plane P which is outside of the figure.
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Euler’s formula

Theorem. For any convex polyhedra

F �E C V D 2

where F is the number of faces,E the number of edges and V the number
of vertices. In fact the formula is valid for any polyhedra whose edges do
not project into intersecting arcs on a sphere by central projection.

1.2.2 Proof number 1

First step. Project the edges of the polyhedra on a sphere by a central projection with projection center
at the center of the sphere. The edges transform into arcs of great circles (a great circle of a sphere is a
circle that has as center the center of the sphere). You may move the vertices on the the sphere without
changing the values of F , E and V . Let the vertices move down to come near a "horizontal" plane
tangent to the sphere. Finally project from the North pole the figure onto the horizontal plane. You get a
connected planar graph and the problem is to show the validity of Euler’s formula for a connected planar
graph where the exterior of the figure is counting as 1 face. For instance the regular convex polyhedra
give

Second step. We proceed recursively step by step until we have reduced the connected planar graph to
K1 that is one vertex. Then we have F D 1, E D 0 and V D 1, so the Euler formula is valid. Procced
as follows :

A. If there are vertices which belongs only to one edge (that can happen when some edges have been
taken away), take away one of these vertices and simultaneously the corresponding edge. That keeps F
and substracts 1 from E and from V : it does not change F �ECV . The new graph is still a connected
graph. Go on with each of the vertices belonging only to one edge. and then go on to B.
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For instance, starting from a graph G1, you transform it to G2, G3 and G4, without changing the
number F �E C V

G1

2 � 7C 7 D 2

G2

2 � 6C 6 D 2

G3

2 � 5C 5 D 2

G4

2 � 4C 4 D 2

B. If all the vertices belong to at least 2 edges, take away one edge. This preserves connectedness,
substracts 1 from E and 1 from F , while V does not change, so F �E C V does not change. Go to A.

C. Since there are only a finite number of vertices and edges, after a finite number of steps, one
reaches K1.�

1.2.3 Proof number 2
This proof begins the same way as the first one, but we stay on the sphere.
A great circle of a sphere is a circle included in the sphere of maximum radius, that is the radius of

the sphere. The center of a great circle C of a sphere † is the center O of the sphere. Given two points
M and N of a sphere, a geodesical arc joining these points is an arc of a great circle whose endpoints
are M and N . If M and N are not opposite points on the sphere, there are 2 geodesical arcs joining M
and N . If M and N are opposite points on †, then all the half-circles with diameter the segment MN
are geodesical arcs joining M and N . There are infinte many of them.

A spherical triangle on a sphere † is given by three points A, B and C belonging to † and three

geodesical arcs joining these points two by two, denoted
_

BC ,
_

CA and
_

AB . These geodesical arcs are
called the sides of the spherical triangle. The angles, measured in radians, of the spherical triangle are
the angles done by the half-tangent to the sphere at the endpoints of geodesical arcs which are the sides
of it. We suppose that the radius of the sphere is 1. Then we call solid angle defined by the spherical

triangle its area. We denote it by
4

ABC .
Examples. The area of the hole sphere is 4� . The area of the triangle NAB , where N is the north pole,
A and B points on the equator such that OA and OB are orthogonal is 1=8th of the hole sphere, that is
�=2.

We show in 1.2.4 "Slices of melon", that the sum of the three angles of a spherical triangle is equal
to �Cthe area of the spherical triangle :

1BAC C1CBAC1ACB D �C
4

ABC

First step. Project the edges of the polyhedra on a sphere by a central projection with projection center
at the center of the sphere. The edges transform into arcs of great circles. This time you do not move
the vertices on the the sphere.
Second step. Add one diagonal as an edge for each quadrilateral : by drawing a diagonal of a quadrilate-
ral, you add 1 to the number E of vertices but also 1 to the number F of faces, the number V of vertices
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remaining constant ; thus the number F �ECV does not change. Same thing for pentagons : you draw
two diagonals from one vertex, adding 2 to E and 2 to F , keeping V constant (you may notice that you
could also do that for any planar graph).

As a consequence, we may suppose that our graph contains only trilinear faces.
Third step. If you count the sides of all the triangles, you count each edge twice, thus

3F D 2E

If you add all the angles of all the triangles you get 2� at each vertex, so the sum is 2�V . But if you
count triangle by triangle you get � for each triangle C the area of the triangle. The total sum is thus
�FCthe total area of the sphere, that is 4� , thus

2�V D �F C 4�

Finally

F �E C V D F �
3

2
F C

1

2
F C 2 D 2: �

1.2.4 Slices of melon
We consider a spere † of radius 1, with center O .
Let A be a point of † and let A0 be the point opposite to A on †. The point A0 is the intersection,

different from A, of † with the line AO . All the great circles going through A are also going through
A0. Let us look at two great circles going through A and let ˛ denote the angle of the tangents to these
circles at point A.

A

A0

O

˛

view from above :

˛

A O A0

The area of the melonslice (spherical diedral) is proportional to its angle ˛. Since for a complete tour
one gets the whole sphere of area 4� , corresponding to an angle 2� , the coefficient of proportionality
is 2 and

The area of the melon slice with angle ˛ is 2˛.

Let’s consider a spherical triangle with vertices A, B and C . Denote the opposite points by A0, B 0

and C 0. By central symetry, the area of the spherical triangle A0B 0C 0 is the same as the area of the
spherical triangle ABC . Let us denote that area by S and the angles by ˛, ˇ and  :
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A

A0

B

B 0

C

C 0

We are going to cover the whole sphere with 6 melon slices : those with summits the vertices of
the triangle. By doing so we cover the whole sphere once everywhere but on the triangles ABC and
A0B 0C 0 which are covered 3 times, that is 2 times to much to get the sphere once. Thus 2 � 2˛ C 2 �
2ˇ C 2 � 2 � 2 � 2S D 4� and finally :

˛ C ˇ C  D � C S �

1.3 Generalizations

1.3.1 Higher dimensions

Wikipedia says : "In the mid-19th century the Swiss mathematician Ludwig Schläfli discovered the
four-dimensional analogues of the Platonic solids, called convex regular 4-polytopes. There are exactly
six of these figures ; five are analogous to the Platonic solids, while the sixth one, the 24-cell, has no
lower-dimensional analogue. In all dimensions higher than four, there are only three convex regular
polytopes : the simplex, the hypercube, and the cross-polytope. In three dimensions, these coincide
with the tetrahedron, the cube, and the octahedron." The simplex is auto-dual. The hypercube and the
cross-polytope are dual.

Harjoitus 7. Let .O;E{; E|/ be an orthonormal frame of a plane. A square may be described by its 4
vertices with coordinates .1; 1/, .1;�1/, .�1; 1/ and .�1;�1/. Let .O;E{; E|; Ek/ be an orthonormal frame
of a 3-space. How would you describe a cube centered at O with faces parallel to the coordinate planes
and length of the edges equal to 2 ? Cut that cube with the plane having the equation x C y C z D 0.
Show that the section is a regular hexagone. Let us describe a hypercube in an n-dimensional real space
by its vertices with coordinates .˙1;˙1; : : : ;˙1/. Show that the hypercube has 2n vertices, n2n�1

edges, : : : ,
�
n

k

�
2n�k k-dimensional faces, : : : , n2 .n � 1/-dimensional hyperfaces.

Harjoitus 8. Let .O;E{; E|/ be an orthonormal frame of a plane. A square may be described by its 4 ver-
tices with coordinates .0; 1/, .1; 0/, .0;�1/ and .�1; 0/. Let .O;E{; E|; Ek/ be an orthonormal frame of a 3-
space. Show that one can describe an octahedron centered atO with vertices .0; 0; : : : ; 0;˙1; 0; : : : ; 0/.
The vertices are on the axes and the main diagonals have length 2. How would you describe a cross-
polytope in an n-dimensional real space ?
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1.3.2 Groups

1.3.3 Archimedian polyhedra, prisms and anti-prisms

1.3.4 Kepler, Catalan, Alice Boole Stott, Coxeter

1.3.5 Golden ratio

1.4 Answers to some questions asked by the students

1. When is a polyhedron said to be regular ?
When all its faces are isometric (= equal) and are regular polygons and when there are the same
number of faces meeting at each vertex.

2. Why are there not more than 5 convex regular polyhedra ? Why are there exactly 5 ?
There are at least 5, since we have shown explicitely the 5. There can not be more because the
sum of the angles at one vertex has to be less than 360° or 2� radians.

3. Is there some historical story behind polyhedra ?
Yes, many stories in fact. Usualy, one begins with Plato and ends with symetry groups. In Plato,
one finds the following relation between the basic elements and the polyhedra :

tetrahedron fire

cube earth

octahedron air

dodecahedron ether or universe

icosahedron water

It is also the basic asumption of modern physics that the classification of elementary particles has
to be done using basic groups. You may find easily many stories on internet.

4. French words

polyhedron polyèdre

edge arrête

vertex sommet

face face

5. If you inscribe a convex regular polyhedron in a sphere of diameter d , what is the length of its
edges ?
Let us call a the length of one edge and d the length of a diameter of the smallest ball containing
the polyhedron. Then
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polyhedron a
d

tetrahedron
p
6
12

cube
p
3
12

octahedron
p
2
8

dodecahedron
p
2.
p
5�1/

24

icosahedron
p
2
pp

5�1

8
4
p
5

Many other quantities may be computed.

6. Let P be a convex regular polyhedron, let A be its area and Vol its volume. For which P , is the
ration A

Vol
biggest ? smallest ?

polyhedron a A
Vol

tetrahedron 6
p
6 � 14; 7

cube 6

octahedron 3
p
6 � 7; 35

dodecahedron 3
2

p
2
p
5.3 �

p
5/
pp

5 � 1 � 7; 88

icosahedron 3
p
3.3 �

p
5/ � 3; 97

Wikipedia (on "platonic solids") :
"Among the Platonic solids, either the dodecahedron or the icosahedron may be seen as the best

approximation to the sphere. The icosahedron has the largest number of faces, the largest dihedral
angle, and it hugs its inscribed sphere the tightest. The dodecahedron, on the other hand, has the smallest
angular defect, the largest vertex solid angle, and it fills out its circumscribed sphere the most."



Chapitre 2

Conic sections

If we consider a plane P , let .O;E{; E|/ be an orthonormal frame. We denote Ox the line through O
in the direction of Ei , Oy the line through O in the direction of Ej . A point M has coordinates x and y if
and only if

��!
OM D xE{ C y E|

We denote that M.x; y/.
If we consider a space E, let .O;E{; E|; Ek/ be an orthonormal frame. A point M has coordinates x, y

and z if and only if
��!
OM D xE{ C y E| C z Ek

We denote that M.x; y; z/. Similar notations for Ox, Oy and Oz as for the plane.

2.1 Line equations and plane equations

2.1.1 Lines
A line D in P parallel to Oy, going through a point A.xA; yA/ is the set of points M.x; y/ such that

x D xA

We say that x D xA is the equation of D. The equation of a line parallel to Ox through the point
B.xB ; yB/ is

y D yB

The general equation of a line is

˛x C ˇy C  D 0 with ˛ ¤ 0 or ˇ ¤ 0:

A line secant with Ox in A.a; 0/ and with Oy in B.0; b/ where A ¤ O and B ¤ O has the
equation

x
a
C

y

b
D 1

13
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2.1.2 Planes
The general equation of a plane is

˛x C ˇy C z C ı D 0 with ˛ ¤ 0 or ˇ ¤ 0 or  ¤ 0:

It is parallel to the plane xOy if ˇ D  D 0, it is parallel to Oz if  D 0.
A plane secant with Ox in A.a; 0; 0/, with Oy in B.0; b; 0/ and with C.0; 0; c/ where A ¤ O ,

B ¤ 0 and with Oz in C ¤ O has the equation

x
a
C

y

b
C

z
c
D 1

2.2 Ellipses

2.2.1 Cartesian equation
Let a > b > 0. The curve described by the equation

x2

a2
C
y2

b2
D 1

is the following ellipse where O.0; 0/, A.a; 0/, B.0; b/, A0.�a; 0/ and B 0.0;�b/ :

AOA0

B

B 0

OA D OA0 D a

OB D OB 0 D b

The point O is the center of the ellipse. The points A and A0 are the vertices and the points B and
B 0 the co-vertices The segment A0A is called the major axis and the segment B 0B the minor axis if as
usual B 0B < A0A. The number a is half the length of the major axis and b is half the length of the
minor axis.

2.2.2 The gardener’s ellipse
Plant two poles F 0 and F in the soil and draw a rope closed by a knot around and stretch it with a

third pole M , but this third pole is movable. It will describe an ellipse and inside that ellipse you may
plant nice flowers. Let us suppose that the two fixed poles are distant by a distance 2c and the closed
rope has length 2cC2a, then the ellipse will have a as half major axis and b D

p
a2 � c2 as half minor

axis.
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F 0 F

M

Theorem. Let a > c > 0 and let F 0 and F be two points such that F 0F D 2c. The set E of points M
such that

MF CMF 0 D 2a

is the ellipse with center the middle of the segment F 0F , major axis the line F 0F , half major axis a and
half minor axis b D

p
a2 � c2.

Proof. Choose the midpoint O of the segment F 0F as origine of the coordinates and the line F 0F as
x-axis, oriented in such a way that F.c; 0/ and F 0.�c; 0/. Call x and y the coordinates of point M .

F 0 FO

M

x
x

y

By Pythagoras’s theorem we have

MF 0 D
p
.x C c/2 C y2 and MF D

p
.c � x/2 C y2

The point M belongs to E if and only if MF 0 CMF D 2a, or .MF 0 CMF/2 D 4a2 that is

.x C c/2 C y2 C .c � x/2 C y2 C 2
p
.x C c/2 C y2

p
.c � x/2 C y2 D 4a2

Simplyfying and putting the square root alone on one side we get the equivalent relationp
.x2 C y2 C c2/2 � 4c2x2 D 2a2 � .x2 C y2 C c2/

or �
.x2 C y2 C c2/2 � 4c2x2 D .2a2 � .x2 C y2 C c2//2

x2 C y2 6 2a2 � c2

At the end we will see that the inequality is a consequence of the equality. Thus we need not take the
inequality into account. We get thus the equivalent relation

�4c2x2 D 4a4 � 4a2.x2 C y2 C c2/
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or

.a2 � c2/x2 C a2y2 D a2.a2 � c2/

that is

x2

a2
C

y2

a2 � c2
D 1

and finally we check the inequation which we may write x2 C y2 6 a2 C b2, which is clear since
the ellipse is inside the rectangle with sides parallel to the axis and going through the vertices and
co-vertices (notice that a2 C b2 is the radius of the circumcircle of that rectangle).�

The tangents to the ellipse.

Let us move the point M along the ellipse. We decompose the movement into two virtual move-
ments : first we add a small length � to MF 0 getting M 01 but to keep MF 0 CMF constant we must
withdraw � fromMF gettingM1. Combining these two virtual movements we get a first order approxi-
mation of the movement along E, that is a movement along the tangent to E. Thus the tangent is the
bisector of the angle 3M1MM

0
1.

F 0 FO

M
M 01

M1

M 0

�

�

x

y

Remember that the bisectors of adjacent supplementary angles are orthogonal

Thus the tangent to the ellipse at M is orthogonal to the bisector of angle made by the lines joining
M to the foci.
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F 0 FO

M

x
x

y

Consequence. If the ellipse is constructed in some reflecting matter and some ray (light or sound
or ...) is emitted from F it will be reflected into a ray going through F 0.

2.2.3 Parametric equations of the ellipse and affine transformation
When the parameter � describes the interval Œ0; 2�Œ, the point M.R cos �;R sin �/ describes the

circle C with center O and radius R. We say that the circle C admits the parametric equations8<:
x D R cos �
y D R sin �
� 2 Œ0; 2�Œ

There are other paramtric equations. For instance the circle C minus the point .�1; 0/ admits the follo-
wing parametric equation 8̂̂̂̂

<̂
ˆ̂̂:
x D R

1 � t2

1C t2

y D R
2t

1C t2

t 2 R

A point M.x; y/ belongs to the ellipse E defined above if and only if .x
a
/2 C .y

b
/2 D 1 or if and

only if there is a number � in Œ0; 2�Œ such that x
a
D cos � and y

b
D sin � . That means that E admits the

following parametric equations 8<:
x D a cos �
y D b sin �
� 2 Œ0; 2�Œ

The tangents to the ellipse.

We may use these parametric equations to get easily the slope of the tangent to the ellipse at a point
.x; y/ where the parameter is � . Compute the differentials�

dx D �a sin �d�
dy D b cos �d�
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Then the slope of the tangent at .x; y/ is

dy
dx
D �

b

a

1

tan �
D �

b2

a2
x

y

(at the pointsA andA0, the tangents toE are parallel to theOy-axis and thus have no slope or an infinite
slope).
Theorem. The tangent to an ellipse E, with foci F 0 and F , at one of its pointsM is an exterior bisector
of the angle 2F 0MF .

The exterior bisector of an angle is the line orthogonal to its bisector.
Proof. To show the theorem we just have to show that the slope of the tangent is the same as the slope
of the vector

�!
V D

1���!F 0Mk
���!
F 0M C

1��!MF k��!MF
Let us compute the slope of

�!
V . In our previous frame .O;E{; E|/

���!
F 0M

ˇ̌̌̌
x C c

y

��!
MF

ˇ̌̌̌
c � x

�y

Thus
�!
V D

1p
.x C c/2 C y2

�
.x C c/E{ C y E|

�
C

1p
.c � x/2 C y2

�
.c � x/E{ C y E|

�
D

� x C cp
.x C c/2 C y2

C
c � xp

.c � x/2 C y2

�
E{ C

� yp
.x C c/2 C y2

C
�yp

.c � x/2 C y2

�
E{

Let us call m�!
V

the slope of the vector
�!
V D x�!

V
E{ C y�!

V
E| . We have m�!

V
D

y�!
V

x�!
V

. Thus after reducing the
fractions to the same denominator, we get

m�!
V
D

y
p
.c � x/2 C y2 � y

p
.x C c/2 C y2

.x C c/
p
.c � x/2 C y2 C .c � x/

p
.x C c/2 C y2

D

y
�p

.c � x/2 C y2 �
p
.x C c/2 C y2

��p
.c � x/2 C y2 C

p
.x C c/2 C y2

�
�
.x C c/

p
.c � x/2 C y2 C .c � x/

p
.x C c/2 C y2

��p
.c � x/2 C y2 C

p
.x C c/2 C y2

�
D

y
�
.c � x/2 C y2 � .x C c/2 � y2

�
.x C c/

�
.c � x/2 C y2

�
C .c � x/

�
.x C c/2 C y2

�
C 2c

p
x2 C y2 C c2 C 2cx

p
x2 C y2 C c2 � 2cx

D
�4cxy

�4cx2 C 2c
�
x2 C y2 C c2

�
C 2c

q�
x2 C y2 C c2

�2
� 4c2x2

D
�2xy

�x2 C y2 C c2 C

q�
x2 C y2 C c2

�2
� 4c2x2
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Now we have to simplify the quantity Z D
q�
x2 C y2 C c2

�2
� 4c2x2.

We use x D a cos � , y D b sin � and c2 D a2 � b2 to get :

Z2 D
�
a2 cos2 � C b2 sin2 � C a2 � b2

�2
� 4c2a2 cos2 �

D
�
.a2 � b2/ cos2 � C a2

�2
� 4a2c2 cos2 �

D
�
c2 cos2 � C a2

�2
� 4a2c2 cos2 �

D
�
a2 � c2 cos2 �

�2
Since Z > 0 and a > c, we have

Z D a2 � c2 cos2 �

and thus

m�!
V
D

�2xy

�x2 C y2 C c2 C a2 � c2 cos2 �

D
�2ab cos � sin �

�a2 cos2 � C b2 sin2 � C c2 C a2 � c2 cos2 �

D
�2ab cos � sin �

.a2 C b2 C c2/ sin2 �
D
�2ab cos �
2a2 sin �

D �
b

a

1

tan �

We get the same result as by the "intuitive" method of first-order virtual deplacements.

The affine transformation that transforms a circle into an ellipse.

We consider the affine transformation of the plane that transforms each point .x; y/ into .x; b
a
y/.

Since it is linear it transforms lines into lines. The points on the Ox-axis are invariant. The circle with
centerO and radius a which has the equation x2Cy2 D a2 is transformed into the curve following the

equation x2 C
�
a
b
y
�2
D a2, or dividing by a2

x2

a2
C
y2

b2
D 1
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O

N

M

� x

y

The slope of the line ON , where N has coordinates .a cos �; a sin �/ is tan � . Thus the slope of the

tangent to the circle atN is �
1

tan �
. The image of that tangent by the affine transformation transforming

the circle into the ellipse is the tangent to the ellipse at the point M.a cos �; b sin �/ and it has a slope
b
a
� .� 1

tan � / D �
b
a

1
tan � .

2.2.4 Two other definitions of an ellipse

Locus of the center of a circle going through a given point and interiorly tangent to a given circle

F 0 F

M� 0
ƒ
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F 0 F

M T� 0
ƒ

Theorem. Let � 0 be a circle with center F 0 and radius 2a and let F be a point inside that circle. The set
of points M wich are center of circles going through F and tangent to � 0 is the ellipse with foci F 0 and
F and with half major axis a.
Proof. Let M be the center of a circle ƒ going through F and tangent to � 0 and call T the point of
contact belonging to both circles � 0 and ƒ. The point T belongs to the line F 0M and M is between F 0

and T , thus

F 0M CMT D 2a

Since T and F belong to a circle with center M , we have MT DMF and thus

MF 0 CMF D 2a

Reciprocally, let M belong to the ellipse E, set of points such that MF 0 CMF D 2a. Then MF 0

is smaller than 2a and thus M is interior to the circle � 0. The line F 0M cuts the circle at a point T . We
have F 0T D 2a or F 0M CMT D 2a ; thus MF D MT and the circle centered at M and tangent to
� at the point T goes through the point F .�

Locus of a fixed point of a rod whose ends move on the axis Ox and Oy

Theorem. Let a > b and let XY be a segment of constant length a C b, moving in such a way that X
belongs toOx and Y toOy. LetM be the point on the segment XY such thatMY D a andMX D b.
The locus of the point M is the ellipse with major axis Ox, minor axis Oy, half major axis a and half
minor axis b.
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Y

X

M

H

K

O x

y

min Y

max Y

min X max X

Proof. Call .s; 0/ the coordinates of X , .t; 0/ the coordinates of Y and .x; y/ the coordinates ofM . Let
H be the orthogonal projection of M on Ox and K the orthogonal projection of M on Oy.

Suppose M is on the segment YX and is such that YM D a and MX D b. Since the lines MH
and YO are parallel

x

a
D

s

aC b

Since the lines MK and XO are parallel

y

b
D

t

aC b

Thus
t D

x

a
.aC b/ and s D

y

b
.aC b/

Finally, since the triangle XOY is rectangle in O , s2 C t2 D .aC b/2 and thus�x
a

�2
.aC b/2 C

�y
b

�2
.aC b/2 D .aC b/2

which means that M belongs to the ellipse E with major axis Ox, minor axis Oy, half major axis a
and half minor axis b.

Reciprocally, letM be a point ofE. The ordinate y ofM is less than b or equal to b. Thus the circle
with centerM and radius b will cut the axisOx in one or two points. If there are two points callX.s; 0/
the point such that jsj > jxj. Call Y.0; t/ the intersection of the line XM and theOt -axis. Put YX D `,
we have MX D a and MY D ` � b. Projecting M on the axis, we get

x

` � b
D
s

`
and

y

b
D
t

`

By Pythagoras’ theorem, we have `2 D s2 C t2, thus

1 D
� x

` � b

�2
C

�y
b

�2
Since M belongs to the ellipse 1 D

�
x
a

�2
C

�
y

b

�2
and thus ` � b D a or ` D aC b.�
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2.2.5 The polar equation with center one focus of an ellipse
Theorem. Let E be an ellipse with one focus F 0 and major axis F 0x. The polar equation of E is

r D
p

1C e cos �

where the number e and the length p are related to the parameters a, b and c D
p
a2 � b2 by

p D
b2

a
and e D

c

a

O FF 0

M

�
H

K
r

x

y

Proof. In the frame .F 0;E{; E|/ the equation of the ellipse may be written

.r cos � C c/2

a2
C
.r sin �/2

b2
D 1

or
b2.r2 cos2 � C 2c cos � r C c2/C a2r2 sin2 � D a2b2

It is a quadratic equation in r (remember that c2 � a2 D �b2)

.a2 sin2 � C b2 cos2 �/r2 C 2b2c cos � r � b4 D 0

The reduced discriminant is1

�0 D .b2c cos �/2 � .a2 sin2 � C b2 cos2 �/.�b4/

D b4.a2 cos2 � � b2 cos2 � C a2 sin2 � C b2 cos2 �/

D b4a2

Thus

r D
b2c cos � ˙ b2a

a2 sin2 � C b2 cos2 �
D
b2c cos � ˙ b2a
a2 � c2 cos2 �

1The discriminant of ax2CbxCc is� D b2�4ac ; the reduced discriminant of ax2C2b0xCc is�0 D b02�ac D 1
4
�.

It is convenient to use �0 when b D 2b0, where b0 is simple.
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We define e and p by

e D
c

a
and p D

b2

a

We have two solutions

r D p
e cos � C 1
1 � e2 cos2 �

and r D p
e cos � � 1
1 � e2 cos2 �

Since 1 � e2 cos2 � D .1C e cos �/.1 � e cos �/, we can simplify and get

r D p
1

1 � e cos �
and r D �p

1

1C e cos �

But these two equations give the same curve since the two points with polar coordinates2 .r; �/ and
.�r; � C �/ are in fact the same point. Thus the polar equation of the ellipse is

r D
p

1 � e cos �

Application : Kepler’s second and first laws

A massive point (like the earth) in a central field (like the gravitational field of the sun) in 1
r

is
attracted by a force in 1

r2 which means that its movement is determined by the differential equation

d2

dt2
���!
F 0M D �k

1

F 0M 3

���!
F 0M

or 8̂̂<̂
:̂

d2

dt2
.r cos �/D� k

r2 cos �

d2

dt2
.r sin �/D� k

r2 sin �

As in mechanics, we denote the derivation with respect to time by a point above the quantity derived.
The system becomes 8̂<̂

:
d
dt
. Pr cos � � r sin � P�/D� k

r2 cos �
d
dt
. Pr sin � C r cos � P�/D� k

r2 sin �

and deriving once again8<: Rr cos � � 2 sin � Pr P� � r cos � P�2 � r sin � R� C
k

r2
cos �D0

Rr sin � C 2 cos � Pr P�/ � r sin � P�2 C r cos � R� C k
r2 sin �D0

2In fact, when r > 0, the couple .�r; � C �/ are not polar coordinates : the polar coordinates of the point described by
.�r; � C �/ on a curve are .r; �/.
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or 8<:. Rr � r P�2 C
k

r2
/ cos � � .2 Pr P� C r R�/ sin �D0

. Rr � r P�2 C k
r2 / sin � C .2 Pr P� C r R�/ cos �D0

ˇ̌̌̌
ˇcos �

sin �

ˇ̌̌̌
ˇ� sin �

cos �

Multiplying the first equation by cos � , the second by sin � and summing we get

Rr � r P�2 C
k

r2
D 0 .1/

Multiplying by � sin � and cos � , we get

2 Pr P� C r R� D 0

or
d
dt
.r2 P�/ D 0

which means that r2 P� is constant. This quantity is the areal speed of the moving point : it is the speed
of growing of the area swept by the radius vector. This is the second of Kepler’s laws : the areal speed
is constant for a point moving in a central field in 1=r . Let us call this constant A, we get

d�
dt
D
A

r2
.2/

We want to show that the curve described by the point is a conic section, possibly an ellipse. For
that we need to consider r as a function of � instead of t . To make things easier we introduce 1=r as a
function u of � , that is

1

r
D u.�/

We then have using .2/

u0.�/ D �
1

r2
dr
d�
D �

1

r2
dr
dt

dt
d�
D �

1

r2
Pr
1

P�
D �

1

A
Pr

and again with the help of .2/

u00.�/ D �
1

A
Rr

dt
d�
D �

1

A
Rr
1

P�
D �

1

A2
r2 Rr

Multiplying .1/ bt � 1
A2 r

2, we get

u00.�/ � .�
1

A2
r2/r P�2 C .�

1

A2
r2/

k

r2
D 0

Using .2/ once again, we have

u00.�/C u.�/ D
k

A2
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The general solution of this differential equation is easy to find. It is depending on two constants � and
�0 (the choice of the minus sign is arbitrary : we take �� < 0 to get the point move in the positive way)

u.�/ D
k

A2
� � cos.� � �0/

By the choice of the F 0x-axis, we may suppose that �0 D 0. Put p D A2

k
and e D �p, we have

u.�/ D
1

p
�
e

p
cos �

and finally

r D
p

1 � e cos �

Indeed if e < 1, the curve is an ellipse. What happens if e D 0 or e > 1 ? (The value of e depends on
the initial values of the movement).

2.2.6 Cartesian equation of an ellipse in a frame centered at one of its vertices
For the use in next section, let us compute the equation of the ellipse wich has one of its vertices in

O and the corresponding focus F on theOy-axis. Let us use as parmeters the half-major axis a and the
ordinate f of F .

a

f

O

F
x

y

The equation of that ellipse is

x2

f .2a � f /
C
�y � a
a

�2
D 1
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or
ax2

2af � f 2
C
y

a
� 2y D 0

or else
y D

1

4f � 2f
2

a

C
1

2a
y

Let y �! C1, we get the usual equation of a parabola

y D
1

4f
x2

This shows that a parabola may be seen as the limit of an ellipse with one focus at infinity.

2.3 Parabola
The curve with equation y D ˛x2 is a parabola. The same is true for

y2 D 2px

Théorème. LetD be a line and F a point that does not belong toD. The locus of the points equidistant
from F and D is a parabole. The point F is called the focus and D its directrix.
Explicitely. The set of points M such that

MF DMH

where H is the orthogonal projection of M on D.
Proof. Let K be the orthogonal projection of F on D and call O the midpoint of the segment KH .
Choose as Ox-axis the line through O orthogonal to D, positively oriented in the direction from K

towards F . Choose O as the origin of the frame of the plane. Put

p D 2OF

Thus the coordinates of F are .
1

4
p; 0/ and those of K are .�

1

4
p; 0/. Thus

MH D x C
1

2
p and MF 2 D .x �

1

2
p/2 C y2

The equation of the locus is then

.x �
1

2
p/2 C y2 D .x C

1

2
p/2

or
y2 D 2px
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O F

x

y
D

H

K

M

Comment. The locus of the points M such that MF D eMH , where 0 < e < 1, is an ellipse. If e > 1,
we get a hyperbola.

2.4 Hyperbola

Reread the section about ellipses and change what has to be changed to get the results about the
hyperbolae.

2.4.1 Reduced equation

Hyperbola H
x2

a2
�
y2

b2
D 1

The new aspect is the existence of asymptotes with equations

y D ˙
b

a
x

2.4.2 Definition with foci

The hyperbola H is the set of points M such that

jMF �MF 0j D 2a
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2.4.3 Parametric equations

8<:
xD�acosht
yDbsinht
t 2R

2.4.4 Other definitions
Let � be a circle of center F 0 and radius 2a and let F be a point outside of the disc with border � .

The Hyperbola H is the locus of the centers M of the circles going through F and tangent to the circle
� . One branch corresponds to the situation where the two circles are exterior to one an other, the other
branch when the circle with center F 0 is inside the circle with center M .

2.4.5 Polar equation
Théorème. The set of points with polar equation

r D
p

1 � e cos �

with e > 1 is a hyperbola.
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2.5 Sand cones
If you put dry sand in a heap or mound or dune by pouring it from one point it will form a cone with

the same slope in all directions.
If you have sand on a solid plane made of metal or wood and if you open a circular hole in that plane

you get a cone "uppside down". If your plane is just a halfplane, the sand will take the shape of a plane.

2.5.1 Equation of sand cones
Let us suppose the apex S of our cone has coordinates .0; 0; z0/. Because of the symetry of space

the basis of our cone on the plane z D 0 will be a circle. Let us call R the radius of that circle. Let Ou
be any axis through O in the xOy-plane and call U the point on that circle with positive abscissa in the
uOz-plane. The slope of the line SU is a constant characteristic of the sand used. We will denote that
slope by m.

O

x

y

u

U

S

O
x

z

y u

The equation of the generators of the cone in the plane uOz, that is the lines intersection of that
plane with the cone are

u

R
C

z

mR
D 1 and

u

�R
C

z

mR
D 1

or
u

R
C

z

mR
� 1 D 0 and �

u

R
C

z

mR
� 1 D 0

The union of these two lines has the equation

.
u

R
C

z

mR
� 1/.�

u

R
C

z

mR
� 1/ D 0
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or

.
z

mR
� 1/2 �

u2

R2
D 0

Developing and multiplying by �R2 we get

u2 �
1

m2
z2 C

2R

m
z �R2 D 0

Let us rotate these two lines around the Oz-axis. For every direction we have

u2 D x2 C y2

Thus the equation of the cone is

x2 C y2 �
1

m2
z2 C

2R

m
z �R2 D 0

If we consider a sand cone whose Oz-axis has coordinates .x0; y0/, we have the equation

.x � x0/
2
C .y � y0/

2
�

1

m2
z2 C

2R

m
z �R2 D 0

or

x2 C y2 �
1

m2
z2 � 2x0x � 2y0y C

2R

m
z C x20 C y

2
0 �R

2
D 0

2.5.2 Equation of sand cones upside-down or sand holes

If there is sand on a plane and this sand can fall through a circular hole the border of the sand tkaes
the shape of a cone with its apex below the plane suporting the sand. We have choosen the frame in such
a way that this plane has equation

z D 0

The equation is the same as the preceding one in which we cange the apex from .x0; y0; mR/ into
.x0; y0;�mR/. Thus we get

x2 C y2 �
1

m2
z2 � 2x0x � 2y0y �

2R

m
z C x20 C y

2
0 �R

2
D 0
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2.5.3 Intersection of a sand cone with a plane with same slope as the generators
of the cone

Let us take the axis of the cone as Oz-axis and the Ox-axis parallel to the plane. The equation of
the plane may be written

y

b
C

z

mb
D 1

where b is a parameter describing the distance between the plane and the origin. We may write this
equation as

y C
1

m
z D b

If we take the intersection of this plane with the cone

x2 C y2 �
1

m2
z2 C

2R

m
z �R2 D 0

we get the curve described by�
x2 C .y C 1

m
z/.y � 1

m
z/C 2R

m
z �R2D0

y C 1
m
zDb

or �
x2 C b.b � 2

m
z/C 2R

m
z �R2D0

y C 1
m
zDb

or �
x2D�2.R�b/

m
z CR2 � b2

y C 1
m
zDb

which means that the curve in the plane y C 1
m
z D b is projecting itself on the xOz-plane onto the

parabola with equation x2 D �2.R�b/
m

z CR2 � b2. Thus this intersection is a parabola.
To describe the actual sand cone and to see the intersection, we have to suppose that 0 < b < R.

How do you interpret the minus sign in front of the coefficient of z ? How do you interpret the fact that
this coefficient becomes positive when b > R ?

2.5.4 Intersection of two sand cones upside-down

We suppose the plane is covered with sand and make two circular holes. The sand makes thus
two cones which are upside-down but with the same slope m. Let us call R and R0 the corresponding
parameters and let us suppose R > R0. Let us suppose the axis located at .0; 0/ and .0; y0/. The
intersection is then the curve with equation�

x2 C y2 � 1
m2 z

2 �
2R
m
z �R2D0

x2 C y2 � 1
m2 z

2 � 2y0y �
2R0

m
z C y20 �R

2D0
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Let us keep the first equation and replace the second one by the difference of the two. We get(
x2 C y2 � 1

m2 z
2 �

2R
m
z �R2D0

2.R�R0/

m
z � 2y0y C y

2
0D0

The intersection of the two cones is thus reduced to the intersection of a cone with a plane. The slope
of this plane is

2y0
2.R�R0/

m

D
my0

R �R0

Since the circles in the plane do not cut each other, we have y0 > R C R0 ; but R C R0 > R � R0.
Thus the slope of the plane is greater than the slope of the cone. The intersection is thus a hyperbola, in
fact just an arc of a hyperbola.

2.5.5 Intersection of two sand cones one upright and one upside-down
We suppose the plane is covered with sand poured from one point above the plane having one

circular hole. The intersection will be the intersection of two cones, one upright and one upside down.
Let us suppose the upright cone has its axis with coordinates .0; 0/. The curve have the equation�

x2 C y2 � 1
m2 z

2 C
2R
m
z �R2D0

x2 C y2 � 1
m2 z

2 � 2y0y �
2R0

m
z C y20 �R

2D0

Let us keep the first equation and replace the second one by the difference of the two. We get(
x2 C y2 � 1

m2 z
2 �

2R
m
z �R2D0

2.RCR0/

m
z C 2y0y � y

2
0D0

The intersection of the two cones is thus reduced to the intersection of a cone with a plane. The absolute
value of the slope of this plane is

2y0
2.RCR0/

m

D
my0

RCR0

The two circles have to be one inside the other, thus y0 < R and y0 < R C R0. The absolute value of
the slope of the plane is then less than the slope of the cone ; the intersection is an ellipse. Here we may
obtain a complete ellipse if we use enough sand !
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Chapitre 3

Graphs

We begin with points that we call vertices. We call the set of these vertices X . We suppose this set
finite and call n the number of elements of X , that is the cardinal of X is n.

Then we have edges. Each edge has two ends. If you think of an edge as a path between two vertices,
you can think the way as a one-way path or a both-ways path. If the paths are thought as one-way, we
have a directed graph . We are going to look at undirected graphs, thus both ends of an edge play the
same role.

3.1 Königsberg’s bridges
The problem submitted to Euler was the following :
In Königsberg there is an island A in a river. Let us call the two banks B and C . After the island the

river splits in two rivers forming a new piece of land between them ; we callD this piece of land. There
are 2 bridges between A and B , 2 bridges between A and C , 1 between A and D, 1 between B and D
and 1 between C and D. Is it possible to travel through the town using each bridge one time and only
one time. We may represent the situation by the following graph :

Euler solves the problem and generalizes it to a general graph. He defines the degree of a vertex as
the number of edges having this vertex as an endpoint. Under a walk along the graph, each time you

35
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go through one vertex, you come with one edge and leave by an other thus without changing the parity
of the degree of that vertex. Two exceptions : the departure point and the arrival point. If there were a
solution, when you have gone through all bridges, deleting each bridge when you have used it, at the end
there would be only vertices with zero edges, that is only vertices with even degrees. The four vertex
have odd degrees, thus the problem has no solution.

3.2 Definition

Notation. If X is a set we denote by X&X the set of subsets of X which have 1 or 2 elements.

X&X D ffa1; a2gja1 2 X and a2 2 Xg

We denote by P .X/ the set of subsets of X , by P2.X/ the set of subsets of X having 2 elements
and by P1.X/ the set of subsets of X having 1 element. The set X&X is the union of the sets P2.X/

and P1.X/.

X&X D P2.X/ [P1.X/ D fA 2 P .X/ j card A D 1 or card A D 2g

Definitions. A graph or multigraph G is a triplet G D .X;E;‰/ where X and E are sets and ‰ is a
map from E to X&X . The elements of X are called the vertices of the graph G, the elements of E are
called the edges of the graph G. For each edge e, the elements of ‰.e/ are called the ends or endpoints
of the edge e. If a vertex x is an endpoint of an edge e, we say that this edge e is adjacent to x and that
the vertex x is adjacent to the edge e. An edge e is called a loop if ‰.e/ contains only one vertex :"the
two endpoints of a loop are the same".
Comment. It is often useful to use oriented edges. In that case one should use X � X D X2 instead of
X&X .

In the following we are concerned only by unoriented graphs where there are no loop and where
there is at most one edge for each fx1; x2g 2 P2.X/. Therefore we will use the following definition
where we identify E with ‰.E/.
Definition. A graph is a couple .X;E/ where E � P2.X/.

3.3 Singleton Graph

K1
Eulerian and Hamiltoian
Chromatic number : 1
Graph radiusD Graph diameterD 0.

.
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3.4 Complete graph of order 2

K2

Noneulerian and nonhamiltoian

Chromatic number : 2

Graph radiusD Graph diameterD 1.

3.5 Complete graph of order 3 : Triangle graph

K3 D C3

Eulerian and Hamiltoian

Chromatic number : 3

Graph radiusD Graph diameterD 1.

3.6 Square graph, K4 and K5
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3.7 Octahedral graph

13

13

137 7

7 7

7 7

2

2 2

Harjoitus 1. Let ABC be an equilateral triangle such that

BC D CA D AB D 13

Let DEF be the triangle inside the triangle ABC such that

BD D CD D CE D AE D AF D BF D 7

Then EF D FD D DE D 2.
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3.8 Petersen graph
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3.9 16-cell graph
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3.10 Cuboctahedral graph
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Chapitre 4

Infinity

4.1 Hilbert’s Grand Hotel

The Hilbert’s Grand Hotel has infinite many rooms numbered 1, 2, 3, 4 . . .

4.1.1 Situation 1

The Hotel is full and a new guest arrives.
Can the manger accommodate the new guest ? - Yes, he can !
There is a simple solution : to ask the guests to change room. Every guest has to move from his

room to the room next door. More precisely if n denotes the number of his room, he has to move to the
room with number nC 1. And thus the room number 1 will be free and available for the new guest. We
have used the map :

f W N� [ fguestg �! N�;

�
n 7�!nC 1

guest 7�!1

4.1.2 Situation 2

The Hotel is full and each guest has one friend coming. Can the manger accommodate all these new
guests ? - Yes, he can !

There is still a simple solution : to ask the guests to change room. Every guest has to move from his
room to the room with double number. More precisely if n denotes the number of his room, he has to
move to the room with number 2n. And thus the rooms with odd numbers will be free and available for
the new guest. The friend of the person in room n will be accommodated in room 2n� 1 and himself in
room 2n. We have used the map :

f W N� [N� � f1g �! N�;

�
n 7�!2n

.n; 1/ 7�!2n � 1

43
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4.1.3 Situation 3
The Hotel is full and each guest has 9 friends coming.
Can the manger accommodate all these new guests ? - Yes, he can !
There is still a simple solution : to ask the guests to change room. Every guest has to move from his

room to the room with the number which is 10 times the number of the room he had previously. More
precisely if n denotes the number of his room, he has to move to the room with number 10n. And thus
the rooms with numbers which are not multiple of 10 will be free and available for the new guests. The
friends of the person in room n will be accommodated in room 10.n � 1/ C 1, 10.n � 1/ C 2, : : : ,
10.n � 1/C 9, and himself in room 10n. We have used the map :

f W N� [N� � f1; 2; : : : ; 9g �! N�;

�
n 7�!10n

.n; j / 7�!10.n � 1/C j

4.1.4 Situation 4
The Hotel is full and each guest has infinite many friends coming.
Can the manger accommodate all these new guests ? - It depends on the kind of infinity. If it is

possible to label the friends of the guest in room n by N for each n, then yes it is possible !
Here is one solution : label the friends of guest n by .n; 1/, .n; 2/, .n; 3/, : : : and give the rooms

following the new rule : the friend of the person in room n numbered .n; j / will be accommodated in
room .nCj�1/.nCj /

2
C n, and himself in room .n�1/n

2
C n D n.nC1/

2
. We have used the map :

f W N� [N� �N� �! N�;

�
n 7�! n.nC1/

2

.n; j / 7�!nC .nCj�1/.nCj /

2

We may illustrate this map by the following tables. In the first table we have .n; j / and n identified
with .n; 0/ ; in the second table the corresponding image by f .

1 D .1; 0/ 2 D .2; 0/ 3 D .3; 0/ : : : n D .n; 0/ . . .
.1; 1/ .2; 1/ .3; 1/ . . . .n; 1/ . . .
.1; 2/ .2; 2/ .3; 2/ . . . .n; 2/ . . .
.1; 3/ .2; 3/ .3; 3/ . . . .n; 3/ . . .
:::

:::
::: . . .

::: . . .
.1; j / .2; j / .3; j / . . . .n; j / . . .
:::

:::
::: . . .

::: . . .

1 3 6 : : : n.nC1/

2
. . .

2 5 9 . . . .n; 1/ . . .
4 8 14 . . . .n; 2/ . . .
7 13 18 . . . .n; 3/ . . .
:::

:::
::: . . .

::: . . .
j.jC1/

2
C 1 .jC1/.jC2/

2
C 2 .jC2/.jC3/

2
C 3 . . . .nCj�1/.nCj /

2
C n . . .

:::
:::

::: . . .
::: . . .
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For instance, the image of .2; 3/ is 13.
I have said that the answer depends on the kind of infinity involved. If one guest had as many friends

as there are real numbers between 0 and 1, than it would be too many guests for the manager !

4.2 An infinitely deep well

Suppose you have infinite many balls numbered 1, 2, 3, 4, . . .

1 2 3 n

and a well where you can put the balls, even if there are infinite many of them.
We suppose we can do the operations as fast as we want. Let us suppose we do it each time twice as

fast as the previous time : the first operation between 11 o’clock and 11W30, the second between 11W30
and 11W45, the third between 11W45 and 11W52W30, and so on. At noon (or midnight !) that is at 12W00,
we’ll have done infinite many operations.

4.2.1 First procedure

Rule :
Operation 1. Put the balls 1 to 10 (that is the balls 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) in the well and

extract the ball 10.
Operation 2. Put the balls 11 to 20 (that is the balls 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20) in the

well and extract the ball 20.
Operation 3. Put the balls 21 to 30 (that is the balls 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30) in the

well and extract the ball 30.
. . .. . ..
Operation n. Put the balls 10.n � 1/C 1 to 10n in the well and extract the ball 10n.
And so on . . .. . .. . ...

Question : how many balls are in the well at noon ?
Answer : infinite many. In fact everybody agrees on this answer.

4.2.2 Second procedure

Rule :
Operation 1. Put the balls 1 to 10 (that is the balls 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) in the well and

extract the ball 1.
Operation 2. Put the balls 11 to 20 (that is the balls 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20) in the

well and extract the ball 2.
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Operation 3. Put the balls 21 to 30 (that is the balls 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30) in the
well and extract the ball 3.

. . .. . ..
Operation n. Put the balls 10.n � 1/C 1 to 10n in the well and extract the ball n.
And so on . . .. . .. . ...

Question : how many balls are in the well at noon ?
Answer : The well is EMPTY. In fact everybody do not agree on this answer. So we have to prove

our answer.
Proof. Suppose that at the end the well is not empty. Then the set of the numbers of the balls in the well
has a smallest element. Let us call it n0. But at the operation n0 that ball has been extracted from the
well. Thus we are led to a contradiction. �

4.2.3 Third procedure

Rule :
Operation 1. Put the balls 1 to 10 (that is the balls 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) in the well and

extract one ball at random among the 10 balls in the well.
Operation 2. Put the balls 11 to 20 (that is the balls 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20) in the

well and extract one ball at random among the 19 balls still in the well.
Operation 3. Put the balls 21 to 30 (that is the balls 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30) in the

well and extract one ball at random among the 28 balls still in the well.
. . .. . ..
Operation n. Put the balls 10.n � 1/C 1 to 10n in the well and extract one ball at random among

the 10n � nC 1 balls still in the well.
And so on . . .. . .. . ...

Question : What is the probability that the well is empty at noon ?
Answer : The probability that well is EMPTY IS EQUAL TO 1. This result can be proven in the theory

of probability.

4.3 Decimal development of fractions

4.3.1 A nice proof

Let
x D 0; 999 999 999 9 : : :

multiply both sides by 10
10x D 9; 999 999 999 9 : : :

thus
10x D 9C 0; 999 999 999 9 : : : D 9C x
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then
10x � x D 9

or
9x D 9

and finely
x D 1

4.3.2 Write the decimal development of fractions with numerator 1
Examples

1

2
D 0; 5 I

1

3
D 0; 333 333 33 I

1

4
D 0; 25 I

1

5
D 0; 2 I

1

6
D 0; 166 666 66

1

7
D 0; 142 857 142 857 142 857 : : : I

1

8
D 0; 125 I

1

9
D 0; 111 111 11 : : : I

1

10
D 0; 1

1

11
D 0; 090 909 090 909 090 909 : : :

Describe what happens.
Why is the period of the development of 1

n
at most n � 1 ? can it happen that the period is equal

to n � 1 ? We call period the minimum number of digits which are repeated at infinity. For instance :
243
26
D 9; 346 153 846 153 846 153 846 153 846 : : : has a period equal to 6 : the sequence 461538 is

repeating itself to infinity.
Do you know or can you imagine numbers whose development never becomes periodic ?
When the development is periodic after some decimals, can you find back the fraction ?

Example 1.
Let a D 0; 722 222 : : :. Write a as a fraction.
We have a D 0; 7C 1

10
0; 222 222 : : :. Put p

q
D 0; 222 222 : : :, we have 10p

q
D 2; 222 222 : : : thus

the quotient of the division of 10p by q is 2 and the remainder should be p since the period is 1, and we
should get on with the same operation at each iteration. Thus 10p D 2q C p or 9p D 2q and p

q
D

2
9
.

Finely a D 0; 7C 1
10
2
9
D

65
90
D

13
18

.

Example 2.
Let a D 0; 142 857 142 857 142 857 142 857 : : :. Write a as a fraction : a D

p

q
.

The period is 6, thus

10pDq C r1
10r1D4q C r2
10r2D2q C r3
10r3D8q C r4
10r4D5q C r5
10r5D7q C p



48 CHAPITRE 4. INFINITY

multiply the last relation by 1, The last but one relation by 10, the one before by 100, . . ., the first one
by 100 000. Add and simplify. Then

1 000 000p D 100 000q C 40 000q C 2 000q C 800q C 50q C 7q C p

and
999 999p D 142 857q

thus a D 142857
999999

D
1
7
.

Other method : Use the fondamental formula of analysis :

1

1 � x
D 1C x C x2 C x3 C x4 C � � � C xn C � � �

and thus
1

1 � 1
10p

D 1C 10�p C .10�p/2 C .10�p/3 C � � � C C.10�p/n C � � �

Then

a D 142 857 � 10�6.1C 10�p C .10�p/2 C .10�p/3 C � � � C C.10�p/n C � � � /

D
142 857 � 10�6

1 � 10�6
D
142 857

106 � 1
D
142 857

999 999
D
1

7

Example 3.
Let a D 9; 346 153 846 153 846 153 8 : : :. Write a as a fraction : a D

p

q
.

Answer :

a D 9; 3C 0; 046 153 8.1C 10�6 C 10�12 C � � � / D 9; 3C 0; 046 153 8
1

1 � 10�6

D
93

10
C
461 538

999 990
D
93 461 445

9 999 990
D
1701

182
D 9C

63

182
D
93

10
C

3

65

Harjoitus 1. Find n and d relatively prime, such that n
d
D 0; 315 757 575 757 575 757 575 : : :.

Harjoitus 2. Find n and d relatively prime, such that n
d
D 0; 316 216 216 216 216 216 216 : : :.

4.4 Developments in bases three and two

4.4.1 In base three
Digits : 0, 1 and 2.
Integers : 0, 1, 2, 1times three, 1times threeC1, 1times threeC2,

2times three, 2times threeC1, 2times threeC2,
1times three times three, . . .
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or simpler : 0, 1, 2, 10, 11, 12,
20, 21, 22,
100, . . .

Following numbers : 101, 102, 110, 111, 112, 120, 121, : : :
Example. 210 211 means in decimal writing 1C 1 � 3C 2 � 32 C 0 � 33 C 1 � 34 C 2 � 35 D 589.

The other way round : starting with 589, divide it by 3 the remainder is 1, that we keep as last digit,
the quotient is 196 that we divide by 3, and so on.
Real positive numbers between 0 and 1
Example. 0,210211 means

2
1

3
C 1

1

32
C 0

1

33
C 2

1

34
C 1

1

35
C 1

1

36
D
2

3
C
1

9
C

2

81
C

1

243
C

1

729

As in the base ten, we have in base three : 0; 120 122 222 222 : : : D 0; 120 200 000 000 : : :. The
fractions with denominator 3k have two developments.

4.4.2 In base two
Digits : 0, and 1.
Integers : 0, 1, 1� two, 1� twoC1, 1� two � two, 1� two � twoC1,

1� two � twoC1� two,1� two � twoC1� twoC1, 1� two � two � two,
1� two � two � twoC1, . . .

or simpler : 0, 1, 10, 11, 100, 101,
110, 111, 1 000,
1 001, . . .

Following numbers : 1 010, 1 011, 1 100, 1 101, 1 110, 1 111, : : :
Example. 110 011 means in decimal writing 1C 1 � 2C 0 � 22 C 0 � 23 C 1 � 24 C 1 � 25 D 51.

The other way round : starting with 51, divide it by 2 the remainder is 1, that we keep as last digit,
the quotient is 25 that we divide by 2, and so on.
Real positive numbers between 0 and 1
Example. 0,110011 means

1
1

2
C 1

1

22
C 0

1

23
C 0

1

24
C 1

1

25
C 1

1

26
D
1

2
C
1

4
C

1

32
C

1

64

As in the base ten, we have in base two : 0; 110 011 111 111 : : : D 0; 110 100 000 000 : : :. The
fractions with denominator 2k have two developments.

And now begins my story about Cantor and his marvellous set. . ..


