Professori Eric Lehman (Caen, Ranska) pitää kurssin

Topics in geometry

maalis- huhtikuussa. Kurssista on luentoja on 28 tuntia ja kurssin laajuus on 2 ov. Kurssi hyväksytään C-ryhmän kurssiksi.
Esitiedot: Geometria (kurssille voivat osallistua myös tällä hetkellä geometrian kurssilla olevat)
Päivitetty 23.4.2018 MEP


Kurssin alustava aikataulu (aikataulumuutoksista voidaan sopia yhdessä osallistujien kanssa):

Ensimmäinen luento tiistaina 14.3. klo 10-12 salissa K3, jonka jälkeen luennot jatkuvat viikoilla 11 - 17 tiistaisin ja perjantaisin klo 10-12 normaalisti salissa K3 paitsi seuraavina päivinä:
ti        28.3.     salissa K1
ma     10.4.     klo 10 -12 mikroluokassa M18 (linkit demoihin alla sisällysluettelossa)
pe      14.4.     salissa M8
ti        18.4.     salissa K4.


Kurssikuvaus:

The aims of the course are to present beautiful mathematics and to show how to derive abstract concepts from simple drawings. Each chapter will begin at a very elementary level and end with insights of more conceptual mathematics. The chapters will be (nearly completely) independent from each other. Exercises will be given on tuesdays and corrected on fridays.

The following plan may be changed at the request of the students.

Planned lectures:

Chapter 1.  Parallel and central projections in plane geometry
    Theorem of Thales; theorem of Menelaus; cross ratio; harmonic division; theorem of Ceva.

Chapter 2.  Orthocentric quadrangulars
   Centers of a triangle; Euler's straight line; 3 orthocentric quadrangles associated with a triangle; Feuerbach's theorem; tetraedrons and orthocentrical tetraedrons.

Chapter 3. How to define angles and measures of angles in a plane?
   Points from which a segment is viewed under a given angle; oriented and unoriented angles of lines or of rays; cocyclicity; Simson's line; measures of angles; need of analysis.

Chapter 4. Inversion, a mean to transform circles into straight lines and spheres into planes
   Relative positions of two circles; bundles of circles; orthogonal circles; inversion in the plane; z->1/conj(z); inversion of a point; inversions of circles and lines; Steiner's porism; inversion in space; stereographic projection; Riemann's sphere.
Tuosta on laajempi versiokin

Chapter 5. Computer Aided Geometric Design
   Skeletons; Bezier curves; rational Bezier curves; barycentric computations; spline functions.

Chapter 6. Is geometry a physical or mathematical theory?
   Lines and points generated by intersections starting with a quadrangle; curvature of lines, of surfaces; Gauss' intrinsic curvature; Riemann's space; algebraic geometry; differential geometry; groups and geometries.

Chapter 7. Geometry of space-time
   Groups of Galileo, Lorentz and Poincaré; Minkowski space and special theory of relativity; Langevin's traveller; Newton and Einstein; general theory of relativity; groups and theoretical physics; strings.


Takaisin Kurssit-sivulle