- 1. Let $\{x_1, \ldots, x_n\}$ be a linearly independent set of vectors in the space \mathbb{R}^n . Prove that every $x \in \mathbb{R}^n$ has at most one representation of the form $x = \lambda_1 x_1 + \cdots + \lambda_n x_n$.
- 2. Prove that $\{e_1, \ldots, e_n\}$ is not a strict subset of any linearly independent set of \mathbb{R}^n .
- 3. Show that the set F(S, V) in Definition 1.5 equipped with addition and scalar multiplication is a vector space.
- 4. Let U be a linear subspace of V, $x_1, \ldots, x_p \in U$ and $a_1, \ldots, a_p \in \mathbb{F}$. Then $a_1x_1 + \cdots + a_px_p \in U$.
- 5. Let V be a vector space and let U_1 and U_2 be its linear subspaces. Prove that $U_1 \cup U_2$ is a linear subspace of V if and only if $U_1 \subset U_2$ or $U_2 \subset U_1$.
- 6. Prove: If V is a vector space and $\{U_i\}_{i \in I}$ is a set of linear subspaces of V, then $U = \bigcap_{i \in I} U_i$ is a linear subspace of V.