1. Let (E, d) be a metric space and let $x \in E$. Define

$$d(x, E) = \inf_{y \in E} d(x, y).$$

Show that $\{x : d(x, E) = 0\} = \overline{E}$.

- 2. Let $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence in the metric space (M, d). Prove that there exists R > 0 such that $\{x_n\}_{n=1}^{\infty} \subset B_d(x_1, R)$.
- 3. Let $\{a_n\}$ be a Cauchy sequence in the metric space (M, d). Prove: If the sequence $\{a_n\}$ has a subsequence, which converges to $a \in M$, then also $\{a_n\}$ converges to a.
- 4. Let X be an infinite set. Let \mathcal{T} consist of \emptyset , X and all sets G such that $X \setminus G$ is a finite set. Prove that (X, \mathcal{T}) is a topological space.
- 5. Let $A \subset \mathbb{R}^n$ be a set whose every point has a neighbourhood which includes only a countable number of points of A. Prove that A is countable. (Hint: Lindelöf's covering theorem).
- 6. Let A be a subset of the topological space X. Prove that

 $x \in \{\text{the cluster points (kasaantumispisteet) of } A\}$

if and only if $x \in \overline{A \setminus \{x\}}$.