- 1. The problem 1 of Exercise 3.
- 2. Prove that the collection of disjoint (pistevieras) open sets in \mathbb{R}^n is either finite or countable.
- 3. Suppose that $f : \mathbb{R}^m \to \mathbb{R}^n$ is continuous. Prove that $f(\overline{A}) \subset \overline{f(A)}$ for all $A \subset \mathbb{R}^m$. Give an example where $f(\overline{A}) \neq \overline{f(A)}$.
- 4. Let f be a continuous real function on a metric space X. Let $\mathbb{Z}(f)$ be the set of all $p \in X$ at which f(p) = 0. Prove that $\mathbb{Z}(f)$ is closed.
- 5. Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ such that $A \subset B$. Prove that $m^*(A) \leq m^*(B)$.
- 6. Prove Corollary 2.4.