- 1. Prove that the preimages $f^{-1}(\{r\}), r \in \mathbb{R}$, and f^{-1} (any interval) for a measurable function f are measurable.
- 2. Prove Theorem 2.26 (b').
- 3. Let $f, g: E \to \widehat{\mathbb{R}}$ be measurable functions. Prove that the sets

(i) {
$$x \in E \mid f(x) < g(x)$$
 }
(ii) { $x \in E \mid f(x) \le g(x)$ }

and

(iii)
$$\{x \in E \mid f(x) = g(x)\}$$

are measurable (Compare the proof of Theorem 2.17).

4. Let $f_1, \ldots, f_n : E \to \widehat{\mathbb{R}}$ be measurable functions. Prove that the functions

 $\max\{f_1, ..., f_n\}$ and $\min\{f_1, ..., f_n\}$

are measurable.

5. Let f be a nonnegative measurable function. Show that $\int f \, dm = 0$ implies f = 0 a.e.