- 1. Prove that if $f \in L^{\infty}$, $g \in L^{\infty}$, then $fg \in L^{\infty}$.
- 2. Prove Lemma 3.9.
- 3. Show that if $f \in L^1$ and $g \in L^{\infty}$, then

$$\int |fg|dm \le d_{L^1}(f,0)d_{L^\infty}(g,0).$$

- 4. Prove: If the sequence of measurable functions $\{f_n\}$ converges to a measurable function f in the measure m, then $\{f_n\}$ is a Cauchy sequence in the measure m.
- 5. Prove Lemma 3.15 for $p = \infty$.