
Answers to Exercise 10

I.

Proof . First we prove that ‖{xn}‖p =

(∑
n

|xn|p
)1/p

is a norm on lp.

1. ‖{xn}‖p =

(∑
n

|xn|p
)1/p

≥ 0;

2. ‖{xn}‖p = 0 ⇐⇒
(∑

n

|xn|p
)1/p

= 0 ⇐⇒ |xn| = 0, for all n,⇐⇒ {xn} = {0, 0, · · · }
the zero element in lp;

3. for all α ∈ F, ‖α{xn}‖p = ‖{αxn}‖p =

(∑
n

|αxn|p
)1/p

= |α|
(∑

n

|xn|p
)1/p

=

|α|‖{xn}‖p ;

4. according to Minkowski inequality, for any {xn}, {yn} ∈ lp, ‖{xn}+ {yn}‖p = ‖{xn +

yn}‖p =

(∑
n

|xn + yn|p
)1/p

≤
(∑

n

|xn|p
)1/p

+

(∑
n

|yn|p
)1/p

= ‖{xn}‖p + ‖{yn}‖p .

Next we show that ‖{xn}‖∞ = sup
n
|xn| is a norm on l∞.

1. ‖{xn}‖∞ = sup
n
|xn| ≥ 0;

2. ‖{xn}‖∞ = 0 ⇐⇒ sup
n
|xn| = 0 ⇐⇒ |xn| = 0, for all n ⇐⇒ {xn} = {0, 0, · · · }, the

zero element in l∞;

3. for any α ∈ F, ‖α{xn}‖∞ = ‖{αxn}‖∞ = sup
n
|αxn| = |α| sup

n
|xn| = |α|‖{xn}‖∞;

4. for any {xn}, {yn} ∈ l∞, ‖{xn}+{yn}‖∞ = ‖{xn +yn}‖∞ = sup
n
|xn +yn| ≤ sup

n
(|xn|+

|yn|) ≤ sup
n
|xn|+ sup

n
|yn| = ‖{xn}‖∞ + ‖{yn}‖∞.

II.
Proof . =⇒ Let {xn} be any Cauchy sequence in the metric space (X, d2), then

according to (b) of theorem 4.7, we know that {xn} is also a Cauchy sequence in the metric
space (X, d1). If (X, d1) is complete, then {xn} converges to x in the metric space (X, d1),
by (a) of theorem 4.7, we get {xn} converges to x in the metric space (X, d2), so (X, d2) is
complete.
⇐= Prove in the same way.
III.
Proof . Since P be the vector space of polynomials on [0, 1], we choose pn = xn, for any

n ∈ N. ‖pn‖1 = sup
n
{|xn| : x ∈ [0, 1]} = 1, for any n ∈ N, and ‖pn‖2 =

∫ 1

0
|xn|dx = 1

n+1
, for

any n ∈ N.
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We can’t find a constant C > 0, s.t. C‖pn‖1 ≤ ‖pn‖2 holds for all n ∈ N, that is for all
n ∈ N, C ≤ 1

n+1
, C must be equal to zero. ‖ · ‖1 and ‖ · ‖2 are not equivalent on P .

IV.
Proof . We choose a bounded sequence fn = xn, ‖fn‖ = sup{|fn(x)| : x ∈ [0, 1]} = 1 <

∞.
It is easy to know that the only possible limit function of this sequence

fn(x) −→ f(x) =

{
0, 0 ≤ x < 1,

1 x = 1.

But we can see that fn has no converging subsequences in such a normed space, since

‖fn − f‖ = sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1)

|xn − 0| = 1, for any n ∈ N.

V.
Proof . According to definition of norm equivalence, we only need to find out two

constants m > 0 and M > 0, such that

m‖f‖1 ≤ ‖f‖2 ≤ M‖f‖1,

which holds for all f ∈ CR([0, 1]).
In fact, since, for t ∈ [0, 1],

1− t3 = (1− t)(1 + t + t2)

and
1− t ≤ 1− t3 ≤ 3(1− t),

we get that
‖f‖1 ≤ ‖f‖2 ≤ 3‖f‖1

holds for all f ∈ CR([0, 1]).
VI.
Proof .

(i) is false. Recall l1 is the family of all sequences {xn} in R such that

∞∑
n=1

|xn| < ∞.

Choose xn = 1
n
, it is easy to show that { 1

n
}∞n=1 ∈ c0, but

∞∑
n=1

1
n

is diverge, which means

{ 1
n
}∞n=1 /∈ l1.

(ii) is true. {an}∞n=1 ∈ lp, means

( ∞∑
n=1

|an|p
)1/p

< ∞
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and {bn}∞n=1 ∈ l
p

p−1 , means

( ∞∑
n=1

|bn|
p

p−1

)1−1/p

< ∞.

According to Hölder inequality,

∞∑
n=1

|anbn| ≤
( ∞∑

n=1

|an|p
)1/p ( ∞∑

n=1

|bn|
p

p−1

)1−1/p

< ∞.

{anbn}∞n=1 ∈ l1.

(iii) is true. For any x = {xn}∞n=1 ∈ c, we choose y = {−xn}∞n=1, it is obvious that y ∈ c,
then x + y = {xn + (−xn)}∞n=1 = {0}∞n=1 ∈ c0.
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