Answers to Exercise 10

I.

Proof. First we prove that $\|\{x_n\}\|_p =$ \sqrt{p} n $|x_n|^p$ $\sqrt{1/p}$ is a norm on l^p .

1.
$$
||{x_n}||_p = \left(\sum_n |x_n|^p\right)^{1/p} \ge 0;
$$

2.
$$
||\{x_n\}||_p = 0 \iff \left(\sum_n |x_n|^p\right)^{1/p} = 0 \iff |x_n| = 0
$$
, for all $n \iff \{x_n\} = \{0, 0, \dots\}$
the zero element in l^p ;

3. for all $\alpha \in \mathbb{F}$, $\|\alpha\{x_n\}\|_p = \|\{\alpha x_n\}\|_p =$ \sqrt{p} n $|\alpha x_n|^p$ $\sqrt{1/p}$ $= |\alpha|$ \sqrt{p} n $|x_n|^p$ $\sqrt{1/p}$ = $\|\alpha\| \{x_n\}\|_p ;$

4. according to Minkowski inequality, for any $\{x_n\}$, $\{y_n\} \in l^p$, $\|\{x_n\} + \{y_n\}\|_p = \|\{x_n +$ $y_n\}\|_p =$ $\frac{1}{2}$ n $|x_n+y_n|^p$ $\frac{1}{\sqrt{1/p}}$ ≤ $\frac{1}{\sqrt{2}}$ n $|x_n|^p$ $\frac{1}{2}$ $+$ 』,
(一 n $|y_n|^p$ $\begin{array}{c} 0 \\ 1/p \end{array}$ $= \| \{x_n\} \|_p + \| \{y_n\} \|_p.$

Next we show that $\|\{x_n\}\|_{\infty} = \sup_n |x_n|$ is a norm on l^{∞} .

- 1. $\|\{x_n\}\|_{\infty} = \sup_n |x_n| \ge 0;$
- 2. $\|x_n\|\|_{\infty} = 0 \iff \sup |x_n| = 0 \iff |x_n| = 0$, for all $n \iff \{x_n\} = \{0, 0, \dots\}$, the zero element in l^{∞} ; $\binom{n}{l}$
- 3. for any $\alpha \in \mathbb{F}$, $\|\alpha\{x_n\}\|_{\infty} = \|\{\alpha x_n\}\|_{\infty} = \sup_{n} |\alpha x_n| = |\alpha| \sup_{n} |x_n| = |\alpha| \|\{x_n\}\|_{\infty}$;

4. for any $\{x_n\}, \{y_n\} \in l^{\infty}, \|\{x_n\} + \{y_n\}\|_{\infty} = \|\{x_n+y_n\}\|_{\infty} = \sup_n |x_n+y_n| \leq \sup_n (|x_n| +$ $|y_n|$) \leq sup $|x_n|$ + sup $|y_n|$ = $\|\{x_n\}\|_{\infty}$ + $\|\{y_n\}\|_{\infty}$.

II.

Proof. \implies Let $\{x_n\}$ be any Cauchy sequence in the metric space (X, d_2) , then according to (b) of theorem 4.7, we know that $\{x_n\}$ is also a Cauchy sequence in the metric space (X, d_1) . If (X, d_1) is complete, then $\{x_n\}$ converges to x in the metric space (X, d_1) , by (a) of theorem 4.7, we get $\{x_n\}$ converges to x in the metric space (X, d_2) , so (X, d_2) is complete.

 \Leftarrow Prove in the same way.

III.

Proof. Since P be the vector space of polynomials on [0, 1], we choose $p_n = x^n$, for any $n \in \mathbb{N}$. $||p_n||_1 = \sup_n \{|x_n| : x \in [0, 1]\} = 1$, for any $n \in \mathbb{N}$, and $||p_n||_2 =$ $\frac{1}{r^1}$ $\int_0^1 |x^n| dx = \frac{1}{n+1}$, for any $n \in \mathbb{N}$.

We can't find a constant $C > 0$, s.t. $C||p_n||_1 \le ||p_n||_2$ holds for all $n \in \mathbb{N}$, that is for all $n \in \mathbb{N}, C \leq \frac{1}{n+1}, C$ must be equal to zero. $\|\cdot\|_1$ and $\|\cdot\|_2$ are not equivalent on \mathcal{P} . IV.

Proof. We choose a bounded sequence $f_n = x^n$, $||f_n|| = \sup\{|f_n(x)| : x \in [0,1]\} = 1$ ∞.

It is easy to know that the only possible limit function of this sequence

$$
f_n(x) \longrightarrow f(x) = \begin{cases} 0, & 0 \le x < 1, \\ 1 & x = 1. \end{cases}
$$

But we can see that f_n has no converging subsequences in such a normed space, since

$$
||f_n - f|| = \sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1)} |x^n - 0| = 1
$$
, for any $n \in \mathbb{N}$.

V.

Proof. According to definition of norm equivalence, we only need to find out two constants $m > 0$ and $M > 0$, such that

$$
m||f||_1 \le ||f||_2 \le M||f||_1,
$$

which holds for all $f \in C_{\mathbb{R}}([0,1])$.

In fact, since, for $t \in [0, 1]$,

$$
1 - t^3 = (1 - t)(1 + t + t^2)
$$

and

$$
1 - t \le 1 - t^3 \le 3(1 - t),
$$

we get that

VI.

$$
||f||_1 \le ||f||_2 \le 3||f||_1
$$

holds for all $f \in C_{\mathbb{R}}([0,1])$.

Proof .

(i) is false. Recall l^1 is the family of all sequences $\{x_n\}$ in R such that

$$
\sum_{n=1}^{\infty} |x_n| < \infty.
$$

Choose $x_n = \frac{1}{n}$ $\frac{1}{n}$, it is easy to show that $\{\frac{1}{n}\}$ $\frac{1}{n}$ $\}_{n=1}^{\infty} \in c_0$, but $\sum_{n=1}^{\infty}$ 1 $\frac{1}{n}$ is diverge, which means $\left\{\frac{1}{n}\right\}$ $\frac{1}{n}\}_{n=1}^{\infty} \notin l^1.$

(ii) is true. ${a_n}_{n=1}^{\infty} \in l^p$, means

$$
\left(\sum_{n=1}^{\infty} |a_n|^p\right)^{1/p} < \infty
$$

and ${b_n}_{n=1}^{\infty} \in l^{\frac{p}{p-1}}$, means

$$
\left(\sum_{n=1}^\infty |b_n|^{\frac{p}{p-1}}\right)^{1-1/p}<\infty.
$$

According to Hölder inequality,

$$
\sum_{n=1}^{\infty} |a_n b_n| \le \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{1/p} \left(\sum_{n=1}^{\infty} |b_n|^{\frac{p}{p-1}}\right)^{1-1/p} < \infty.
$$

 ${a_nb_n}_{n=1}^{\infty} \in l^1.$

(iii) is true. For any $x = \{x_n\}_{n=1}^{\infty} \in c$, we choose $y = \{-x_n\}_{n=1}^{\infty}$, it is obvious that $y \in c$, then $x + y = \{x_n + (-x_n)\}_{n=1}^{\infty} = \{0\}_{n=1}^{\infty} \in c_0$.