
Answers to Exercise 11

I.
Proof . First we prove that c0,0 ⊂ lp ⊂ l∞. Recall the definition of lp, which is the

family of all sequences {xn} in R such that

( ∞∑
n=1

|xn|p
) 1

p
< ∞, 1 ≤ p < ∞,

and the space l∞ is the family of all sequences {xn} in R such that

sup
n
|xn| < ∞.

Choose an arbitrary sequence {xn} from the space c0,0, we know there exists a N0 ∈ N,
s.t. xn = 0, for any n > N0. Then,

( ∞∑
n=1

|xn|p
) 1

p
=

( N∑
n=1

|xn|p
) 1

p
< ∞,

which shows that {xn} ∈ lp. If we choose an arbitrary sequence {x′n} from lp, according to
Hölder inequality, for any n

|x′n|p ≤
∞∑

n=1

|x′n|p = ‖{x′n}‖p
lp < ∞,

so
sup

n
|x′n| < ∞,

we get {x′n} ∈ l∞. Thus c0,0 ⊂ lp ⊂ l∞.
Next we prove that c0,0 ⊂ c0 ⊂ c ⊂ l∞. Let {xn} ∈ c0,0, then there exists N ∈ N, s.t.

xn = 0, for all n > N , which implies lim
n→∞

xn = 0, so {xn} ∈ c0. We can get c0 ⊂ c directly

from the definition of the two spaces. Now let’s choose a sequence {yn} arbitrarily from
space c, we have lim

n→∞
yn = y ∈ R, then for any 1 > ε > 0, there exists N ∈ N, when n ≥ N

|yn − y| < ε < 1,

that is to say, for all n ≥ N , |yn| < |y|+ 1, and

sup
n
|yn| = max{|y1|, |y2|, · · · , |yN−1|, |y|+ 1} < ∞,

{yn} ∈ l∞. Thus we have showed c0,0 ⊂ c0 ⊂ c ⊂ l∞.
II.
Proof . It is easy to check that B is a vector space over R. For all f, g ∈ B, and for all

α ∈ R,

(a) ‖f‖B = |f(0)|+ sup
x∈[0,1]

(1− |x|2)|f ′(x)| ≥ 0,
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(b) if ‖f‖B = |f(0)|+ sup
x∈[0,1]

(1−|x|2)|f ′(x)| = 0, then |f(0)| = 0 and sup
x∈[0,1]

(1−|x|2)|f ′(x)| =
0, which implies f(x) = C. for all x ∈ [0, 1], and since f(0) = 0, we get f(x) =
f(0) = 0, i.e. f is the zero function of space C ′; if f ≡ 0, it is obviously to see that
‖f‖B = |f(0)|+ sup

x∈[0,1]

(1− |x|2)|f ′(x)| = 0,

(c)

‖αf‖B = |αf(0)|+ sup
x∈[0,1]

(1− |x|2)|(αf)′(x)|

= |αf(0)|+ sup
x∈[0,1]

(1− |x|2)|α||f ′(x)|

= |α||f(0)|+ |α| sup
x∈[0,1]

(1− |x|2)|f ′(x)|

= |α|(|f(0)|+ sup
x∈[0,1]

(1− |x|2)|f ′(x)|)

= |α|‖f‖B ,

(d)

‖f + g‖B = |(f + g)(0)|+ sup
x∈[0,1]

(1− |x|2)|(f + g)′(x)|

= |f(0) + g(0)|+ sup
x∈[0,1]

(1− |x|2)|f ′(x) + g′(x)|

≤ |f(0)|+ |g(0)|+ sup
x∈[0,1]

(1− |x|2)(|f ′(x)|+ |g′(x)|)

≤ |f(0)|+ |g(0)|+ sup
x∈[0,1]

(1− |x|2)|f ′(x)|+ sup
x∈[0,1]

(1− |x|2)|g′(x)|

≤ (|f(0)|+ sup
x∈[0,1]

(1− |x|2)|f ′(x)|) +
(|g(0)|+ sup

x∈[0,1]

(1− |x|2)|g′(x)|)

= ‖f‖B + ‖g‖B .

B is a normed space indeed.
III.
Proof . X\T = {y ∈ X : ‖y‖ > 1}, the metric in X\T induced by the norm is defined

as:
d(y1, y2) = ‖y1 − y2‖, ∀y1, y2 ∈ X\T.

Associated with this metric definition, we can get a topology of space X\T , where the
open set B(y, r) = {x ∈ X : ‖x− y‖ < r}. For any point y ∈ X\T , there exists a positive
number d, s.t. ‖y‖ = 1 + d > 1. For any x ∈ B(y, d

2
), since ‖y‖ − ‖x‖ ≤ ‖x− y‖ < d

2
, we

obtain ‖x‖ ≥ ‖y‖ − d
2

= 1 + d − d
2

= 1 + d
2

> 1, so x ∈ X\T , which means X\T is open,
i.e. T is closed.

IV.
Proof . From the fact that Y is the subspace of X, we only need to show X ⊂ Y .

Since Y is a subspace, ~0 ∈ Y , and since Y is open, there exists r > 0 and B(~0, r) = {x ∈
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X : ‖x−~0‖X < r} ⊂ Y . For any x ∈ X, let η = r
2
· x
‖x‖X

, it is easy to see that η ∈ B(~0, r),

for ‖η − ~0‖X = ‖η‖X = ‖ r
2
· x
‖x‖X

‖X = r
2

< r. Thus we can get 2‖x‖X

r
· η = x ∈ Y , since Y

is a subspace, which means X ⊂ Y .
V.
Proof . Prove that

< x, y >=
n∑

j=1

xjyj

is an inner product on Rn. For all x, y, z ∈ Rn and all α, β ∈ R,

(a) < x, x >=
n∑

j=1

xjxj =
n∑

j=1

x2
j ≥ 0,

(b) if < x, x >=
n∑

j=1

x2
j = 0, then xj = 0 for any j = 1, 2, · · · , n, that is x = (0, 0, · · · , 0) =

~0; if x = (x1, x2, · · · , xn) = (0, 0, · · · , 0) = ~0, < x, x >=
n∑

j=1

x2
j =

n∑
j=1

02 = 0,

(c) < αx + βy, z >=
n∑

j=1

(αxj + βyj)zj =
n∑

j=1

(αxjzj + βyjzj) =
n∑

j=1

αxjzj +
n∑

j=1

βyjzj =

α
n∑

j=1

xjzj + β
n∑

j=1

yjzj = α < x, z > +β < y, z >,

(d) < x, y >=
n∑

j=1

xjyj =
n∑

j=1

yjxj =< y, x >.

Thus < x, y >=
n∑

j=1

xjyj is an inner product on Rn indeed.
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