Answers to Exercise 11

I.

Proof. First we prove that $c_{0,0} \subset l^p \subset l^\infty$. Recall the definition of l^p , which is the family of all sequences $\{x_n\}$ in \mathbb{R} such that

$$\left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} < \infty, \qquad 1 \le p < \infty,$$

and the space l^{∞} is the family of all sequences $\{x_n\}$ in \mathbb{R} such that

$$\sup_{x} |x_n| < \infty$$

Choose an arbitrary sequence $\{x_n\}$ from the space $c_{0,0}$, we know there exists a $N_0 \in \mathbb{N}$, s.t. $x_n = 0$, for any $n > N_0$. Then,

$$\left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} = \left(\sum_{n=1}^{N} |x_n|^p\right)^{\frac{1}{p}} < \infty,$$

which shows that $\{x_n\} \in l^p$. If we choose an arbitrary sequence $\{x'_n\}$ from l^p , according to Hölder inequality, for any n

$$|x'_n|^p \le \sum_{n=1}^{\infty} |x'_n|^p = \|\{x'_n\}\|_{l^p}^p < \infty,$$

 \mathbf{SO}

$$\sup |x_n'| < \infty,$$

we get $\{x'_n\} \in l^{\infty}$. Thus $c_{0,0} \subset l^p \subset l^{\infty}$.

Next we prove that $c_{0,0} \subset c_0 \subset c \subset l^{\infty}$. Let $\{x_n\} \in c_{0,0}$, then there exists $N \in \mathbb{N}$, s.t. $x_n = 0$, for all n > N, which implies $\lim_{n \to \infty} x_n = 0$, so $\{x_n\} \in c_0$. We can get $c_0 \subset c$ directly from the definition of the two spaces. Now let's choose a sequence $\{y_n\}$ arbitrarily from space c, we have $\lim_{n \to \infty} y_n = y \in \mathbb{R}$, then for any $1 > \varepsilon > 0$, there exists $N \in \mathbb{N}$, when $n \ge N$

$$|y_n - y| < \varepsilon < 1,$$

that is to say, for all $n \ge N$, $|y_n| < |y| + 1$, and

$$\sup_{n} |y_{n}| = \max\{|y_{1}|, |y_{2}|, \cdots, |y_{N-1}|, |y|+1\} < \infty,$$

 $\{y_n\} \in l^{\infty}$. Thus we have showed $c_{0,0} \subset c_0 \subset c \subset l^{\infty}$. II.

Proof. It is easy to check that \mathcal{B} is a vector space over \mathbb{R} . For all $f, g \in \mathcal{B}$, and for all $\alpha \in \mathbb{R}$,

(a)
$$||f||_{\mathcal{B}} = |f(0)| + \sup_{x \in [0,1]} (1 - |x|^2) |f'(x)| \ge 0$$

(b) if $||f||_{\mathcal{B}} = |f(0)| + \sup_{x \in [0,1]} (1-|x|^2) |f'(x)| = 0$, then |f(0)| = 0 and $\sup_{x \in [0,1]} (1-|x|^2) |f'(x)| = 0$, o, which implies f(x) = C. for all $x \in [0,1]$, and since f(0) = 0, we get f(x) = f(0) = 0, i.e. f is the zero function of space C'; if $f \equiv 0$, it is obviously to see that $||f||_{\mathcal{B}} = |f(0)| + \sup_{x \in [0,1]} (1-|x|^2) |f'(x)| = 0$,

(c)

$$\begin{aligned} \|\alpha f\|_{\mathcal{B}} &= |\alpha f(0)| + \sup_{x \in [0,1]} (1 - |x|^2) |(\alpha f)'(x)| \\ &= |\alpha f(0)| + \sup_{x \in [0,1]} (1 - |x|^2) |\alpha| |f'(x)| \\ &= |\alpha| ||f(0)| + |\alpha| \sup_{x \in [0,1]} (1 - |x|^2) |f'(x)| \\ &= |\alpha| (|f(0)| + \sup_{x \in [0,1]} (1 - |x|^2) |f'(x)|) \\ &= |\alpha| ||f||_{\mathcal{B}} \,, \end{aligned}$$

(d)

$$\begin{split} \|f+g\|_{\mathcal{B}} &= |(f+g)(0)| + \sup_{x \in [0,1]} (1-|x|^2)|(f+g)'(x)| \\ &= |f(0)+g(0)| + \sup_{x \in [0,1]} (1-|x|^2)|f'(x)+g'(x)| \\ &\leq |f(0)|+|g(0)| + \sup_{x \in [0,1]} (1-|x|^2)(|f'(x)|+|g'(x)|) \\ &\leq |f(0)|+|g(0)| + \sup_{x \in [0,1]} (1-|x|^2)|f'(x)| + \sup_{x \in [0,1]} (1-|x|^2)|g'(x)| \\ &\leq (|f(0)| + \sup_{x \in [0,1]} (1-|x|^2)|f'(x)|) + (|g(0)| + \sup_{x \in [0,1]} (1-|x|^2)|g'(x)|) \\ &= \|f\|_{\mathcal{B}} + \|g\|_{\mathcal{B}} \,. \end{split}$$

 $\mathcal B$ is a normed space indeed.

III.

Proof . $X \setminus T = \{y \in X : \|y\| > 1\}$, the metric in $X \setminus T$ induced by the norm is defined as:

$$d(y_1, y_2) = ||y_1 - y_2||, \quad \forall y_1, y_2 \in X \setminus T.$$

Associated with this metric definition, we can get a topology of space $X \setminus T$, where the open set $B(y,r) = \{x \in X : ||x - y|| < r\}$. For any point $y \in X \setminus T$, there exists a positive number d, s.t. ||y|| = 1 + d > 1. For any $x \in B(y, \frac{d}{2})$, since $||y|| - ||x|| \le ||x - y|| < \frac{d}{2}$, we obtain $||x|| \ge ||y|| - \frac{d}{2} = 1 + d - \frac{d}{2} = 1 + \frac{d}{2} > 1$, so $x \in X \setminus T$, which means $X \setminus T$ is open, i.e. T is closed.

IV.

Proof. From the fact that Y is the subspace of X, we only need to show $X \subset Y$. Since Y is a subspace, $\vec{0} \in Y$, and since Y is open, there exists r > 0 and $B(\vec{0}, r) = \{x \in X\}$ $X: \|x - \vec{0}\|_X < r\} \subset Y.$ For any $x \in X$, let $\eta = \frac{r}{2} \cdot \frac{x}{\|x\|_X}$, it is easy to see that $\eta \in B(\vec{0}, r)$, for $\|\eta - \vec{0}\|_X = \|\eta\|_X = \|\frac{r}{2} \cdot \frac{x}{\|x\|_X}\|_X = \frac{r}{2} < r$. Thus we can get $\frac{2\|x\|_X}{r} \cdot \eta = x \in Y$, since Y is a subspace, which means $X \subset Y$.

v.

 \mathbf{Proof} . Prove that

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j$$

is an inner product on \mathbb{R}^n . For all $x, y, z \in \mathbb{R}^n$ and all $\alpha, \beta \in \mathbb{R}$,

$$\begin{aligned} \text{(a)} &< x, x >= \sum_{j=1}^{n} x_j x_j = \sum_{j=1}^{n} x_j^2 \ge 0, \\ \text{(b)} \quad \text{if} < x, x >= \sum_{j=1}^{n} x_j^2 = 0, \text{ then } x_j = 0 \text{ for any } j = 1, 2, \cdots, n, \text{ that is } x = (0, 0, \cdots, 0) = \\ \vec{0}; \quad \text{if } x = (x_1, x_2, \cdots, x_n) = (0, 0, \cdots, 0) = \vec{0}, < x, x >= \sum_{j=1}^{n} x_j^2 = \sum_{j=1}^{n} 0^2 = 0, \\ \text{(c)} &< \alpha x + \beta y, z >= \sum_{j=1}^{n} (\alpha x_j + \beta y_j) z_j = \sum_{j=1}^{n} (\alpha x_j z_j + \beta y_j z_j) = \sum_{j=1}^{n} \alpha x_j z_j + \sum_{j=1}^{n} \beta y_j z_j = \\ \alpha \sum_{j=1}^{n} x_j z_j + \beta \sum_{j=1}^{n} y_j z_j = \alpha < x, z > +\beta < y, z >, \\ \text{(d)} &< x, y >= \sum_{j=1}^{n} x_j y_j = \sum_{j=1}^{n} y_j x_j = < y, x >. \\ \text{Thus} < x, y >= \sum_{j=1}^{n} x_j y_j \text{ is an inner product on } \mathbb{R}^n \text{ indeed.} \end{aligned}$$