Answers to Exercise 9

I.

Proof. Let $\{\{x_{n,k}\}\} \subset l^{\infty}$ be a Cauchy sequence, which means $\forall \varepsilon > 0$, for convenience, we let $\varepsilon < 1$, there exists $N \in \mathbb{N}$, for any $n, m \geq N$,

$$d_{l^{\infty}}(\{x_{n,k}\},\{x_{m,k}\}) < \varepsilon.$$

Then we have

$$|x_{n,k} - x_{m,k}| \le \sup_{k} |x_{n,k} - x_{m,k}| = d_{l^{\infty}}(\{x_{n,k}\}, \{x_{m,k}\}) < \varepsilon.$$

Since \mathbb{R} is complete, for any k, there must exist x_k s.t.

$$\lim_{n \to \infty} x_{n,k} = x_k$$

Thus we can get a sequence $\{x_k\}_{k=1}^{\infty}$.

For $|x_{n,k} - x_{m,k}| < \varepsilon$, we let $m \to \infty$, then

$$|x_{n,k} - x_k| \le \varepsilon, \ \forall k \in \mathbb{N}, \text{and } n \ge N,$$

thus for all $n \geq N$,

$$d_{l^{\infty}}(\{x_{n,k}\}, \{x_k\}) = \sup_k |x_{n,k} - x_k| \le \varepsilon < 1.$$

Next we prove that $\{x_k\}_{k=1}^{\infty} \in l^{\infty}$.

$$\sup_{k} |x_{k}| = \sup_{k} |x_{k} - x_{N,k} + x_{N,k}| \le \sup_{k} (|x_{k} - x_{N,k}| + |x_{N,k}|)$$

$$\le \sup_{k} |x_{k} - x_{N,k}| + \sup_{k} |x_{N,k}| < 1 + ||x_{N,k}||_{l^{\infty}} < \infty.$$

So $\{x_k\} \in l^{\infty}$, which means Cauchy sequence $\{x_{n,k}\}$ converges to a sequence in l^{∞} in the metric $d_{l^{\infty}}$.

II.

Proof.

a) For any $\varepsilon > 0$, we choose $N = [\varepsilon^{-\frac{1}{2}}] + 1$, when $n \ge N$,

$$|f_n(x) - 0| \le \frac{1}{n^2} \le \frac{1}{N^2} < \frac{1}{\left(\varepsilon^{-\frac{1}{2}}\right)^2} = \varepsilon.$$

 $\{f_n(x)\}$ converges pointwise to zero.

b) For any $n \in \mathbb{N}$, we choose $\varepsilon = \frac{1}{2n^2} > 0$, and choose $\delta = 1 > 0$,

$$m(\{x | |f_n(x) - 0| \ge \frac{1}{2n^2}\}) = m([-n, n]) = 2n > 1.$$

So $\{f_n\}$ does not converge in the measure m.

c)

$$d_{L^{p}}(f_{n},0) = \left(\int |f_{n}|^{p} dm\right)^{\frac{1}{p}} = \frac{1}{n^{2}} \left(\int \chi_{[-n,n]} dm\right)^{\frac{1}{p}} = \frac{1}{n^{2}} \left(m([-n,n])\right)^{\frac{1}{p}} = \frac{(2n)^{\frac{1}{p}}}{n^{2}}$$
$$= 2^{\frac{1}{p}} n^{\frac{1}{p}-2} \longrightarrow 0 \text{ when } 1 \le p \le \infty.$$

 $\{f_n\}$ converges with respect to d_{L^p} -metric when $1 \le p \le \infty$.

III.

Proof. $\forall (x_1, y_1) \in Z, (x_2, y_2) \in Z$, and $\alpha \in \mathbb{F}$, we define $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$, and $\alpha(x, y) = (\alpha x, \alpha y)$.

First to show that $Z = X \times Y$ is a vector space.

(a) $\forall (x_i, y_i) \in \mathbb{Z}, i = 1, 2, 3,$

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) = (x_2 + x_1, y_2 + y_1) = (x_2, y_2) + (x_1, y_1),$$

and

$$(x_1, y_1) + ((x_2, y_2) + (x_3, y_3)) = (x_1, y_1) + (x_2 + x_3, y_2 + y_3) = (x_1 + x_2 + x_3, y_1 + y_2 + y_3)$$

= $(x_1 + x_2, y_1 + y_2) + (x_3, y_3) = ((x_1, y_1) + (x_2, y_2)) + (x_3, y_3).$

(b)
$$\vec{0} = (\vec{0}_X, \vec{0}_Y) \in Z$$
, s.t. $\forall (x, y) \in Z$, $(\vec{0}_X, \vec{0}_Y) + (x, y) = ((\vec{0}_X + x, \vec{0}_Y + y) = (x, y)$.

- (c) $\forall (x, y) \in \mathbb{Z}$, there exists unique $(-x, -y) \in \mathbb{Z}$, where -x is the inverse vector of x in space $X, x + (-x) = \vec{0}_X$, and -y is the inverse vector of y in space $Y, y + (-y) = \vec{0}_Y$. Then $(x, y) + (-x, -y) = (x + (-x), y + (-y)) = (\vec{0}_X, \vec{0}_Y) = \vec{0}$.
- (d) $1 \in \mathbb{F}, 1 \cdot (x, y) = (1 \cdot x, 1 \cdot y) = (x, y), \forall \alpha, \beta \in \mathbb{F}, \alpha(\beta(x, y)) = \alpha(\beta x, \beta y) = (\alpha\beta x, \alpha\beta y) = (\alpha\beta)(x, y).$

$$\alpha ((x_1, y_1) + (x_2, y_2)) = \alpha (x_1 + x_2, y_1 + y_2) = (\alpha x_1 + \alpha x_2, \alpha y_1 + \alpha y_2)$$

= $(\alpha x_1, \alpha y_1) + (\alpha x_2, \alpha y_2)$
= $\alpha (x_1, y_1) + \alpha (x_2, y_2),$

and

$$(\alpha + \beta)(x, y) = ((\alpha + \beta)x, (\alpha + \beta)y) = (\alpha x + \beta x, \alpha y + \beta y)$$

= $(\alpha x, \alpha y) + (\beta x, \beta y) = \alpha(x, y) + \beta(x, y).$

So $Z = X \times Y$ is a vector space indeed.

To prove that $Z = X \times Y$ is a normed space with the norm defined as this: $\forall (x, y) \in Z = X \times Y, x \in X, y \in Y$, the norm $||(x, y)|| = ||x||_1 + ||y||_2$.

(a) Since $\|\cdot\|_1$ and $\|\cdot\|_2$ are the norms of X, Y respectively, $\|(x,y)\| = \|x\|_1 + \|y\|_2 \ge 0$.

- (b) If some vector $(x, y) \in Z$, s.t. ||(x, y)|| = 0, from the definition, $||(x, y)|| = ||x||_1 + ||y||_2 = 0$, it must be $||x||_1 = 0$ and $||y||_2 = 0$, which mean $x = \vec{0}_X$, and $y = \vec{0}_Y$, that is $(x, y) = (\vec{0}_X, \vec{0}_Y) = \vec{0}$ be the zero vector of Z. On the other side, for zero vector $(\vec{0}_X, \vec{0}_Y) \in Z$, $||(\vec{0}_X, \vec{0}_Y)|| = ||\vec{0}_X||_1 + ||\vec{0}_Y||_2 = 0 + 0 = 0$.
- (c) For any $\alpha \in \mathbb{F}$, and any $(x, y) \in Z$, $\|\alpha(x, y)\| = \|(\alpha x, \alpha y)\| = \|\alpha x\|_1 + \|\alpha y\|_2 = \|\alpha\|\|x\|_1 + \|\alpha\|\|y\|_2 = \|\alpha\|(\|x\|_1 + \|y\|_2) = \|\alpha\|\|(x, y)\|.$
- (d) For any $(x, y) \in Z$, $(x', y') \in Z$,

$$\begin{aligned} \|(x,y) + (x',y')\| &= \|(x+x',y+y')\| = \|x+x'\|_1 + \|y+y'\|_2 \\ &\leq (\|x\|_1 + \|x'\|_1) + (\|y\|_2 + \|y'\|_2) \\ &= (\|x\|_1 + \|y\|_2) + (\|x'\|_1 + \|y'\|_2) \\ &= \|(x,y)\| + \|(x',y')\|. \end{aligned}$$

IV.

Proof. The norm in space $C_{\mathbb{R}}([0,1])$ is defined as:

$$||f|| = \sup\{|f(x)| \, | x \in [0,1]\}.$$

For function $f_n(x) = x^n$, $||f_n(x)|| = \sup\{|x^n| | x \in [0, 1]\} = 1$. The norm in space $L^1([0, 1])$ is defined as:

The norm in space
$$L^1([0,1])$$
 is defined as:

$$\|f\|_p = \int_0^1 |f| dm$$

 So

$$||f_n(x)|| = \int_{[0,1]} |f_n(x)| dm = \int_{[0,1]} x^n dm = \int_0^1 x^n dx = \frac{1}{n+1}.$$