
Answers to Exercise 9

I.
Proof . Let

{{xn,k}
} ⊂ l∞ be a Cauchy sequence, which means ∀ε > 0, for convenience,

we let ε < 1, there exists N ∈ N, for any n,m ≥ N ,

dl∞({xn,k}, {xm,k}) < ε.

Then we have

|xn,k − xm,k| ≤ sup
k
|xn,k − xm,k| = dl∞({xn,k}, {xm,k}) < ε.

Since R is complete, for any k, there must exist xk s.t.

lim
n→∞

xn,k = xk.

Thus we can get a sequence {xk}∞k=1.
For |xn,k − xm,k| < ε, we let m →∞, then

|xn,k − xk| ≤ ε, ∀k ∈ N, and n ≥ N,

thus for all n ≥ N ,

dl∞({xn,k}, {xk}) = sup
k
|xn,k − xk| ≤ ε < 1.

Next we prove that {xk}∞k=1 ∈ l∞.

sup
k
|xk| = sup

k
|xk − xN,k + xN,k| ≤ sup

k
(|xk − xN,k|+ |xN,k|)

≤ sup
k
|xk − xN,k|+ sup

k
|xN,k| < 1 + ‖xN,k‖l∞ < ∞.

So {xk} ∈ l∞, which means Cauchy sequence {xn,k} converges to a sequence in l∞ in the
metric dl∞ .

II.
Proof .

a) For any ε > 0, we choose N = [ε−
1
2 ] + 1, when n ≥ N ,

|fn(x)− 0| ≤ 1

n2
≤ 1

N2
<

1(
ε−

1
2

)2 = ε.

{fn(x)} converges pointwise to zero.

b) For any n ∈ N, we choose ε = 1
2n2 > 0, and choose δ = 1 > 0,

m({x| |fn(x)− 0| ≥ 1

2n2
}) = m([−n, n]) = 2n > 1.

So {fn} does not converge in the measure m.
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c)

dLp(fn, 0) =
( ∫

|fn|pdm
) 1

p
=

1

n2

( ∫
χ[−n,n]dm

) 1
p

=
1

n2

(
m([−n, n])

) 1
p =

(2n)
1
p

n2

= 2
1
p n

1
p
−2 −→ 0 when 1 ≤ p ≤ ∞.

{fn} converges with respect to dLp-metric when 1 ≤ p ≤ ∞.

III.
Proof . ∀(x1, y1) ∈ Z, (x2, y2) ∈ Z, and α ∈ F, we define (x1, y1) + (x2, y2) = (x1 +

x2, y1 + y2), and α(x, y) = (αx, αy).
First to show that Z = X × Y is a vector space.

(a) ∀(xi, yi) ∈ Z, i = 1, 2, 3,

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = (x2, y2) + (x1, y1),

and

(x1, y1) +
(
(x2, y2) + (x3, y3)

)
= (x1, y1) + (x2 + x3, y2 + y3) = (x1 + x2 + x3, y1 + y2 + y3)

= (x1 + x2, y1 + y2) + (x3, y3) =
(
(x1, y1) + (x2, y2)

)
+ (x3, y3).

(b) ~0 = (~0X ,~0Y ) ∈ Z, s.t. ∀(x, y) ∈ Z, (~0X ,~0Y ) + (x, y) = ((~0X + x,~0Y + y) = (x, y).

(c) ∀(x, y) ∈ Z, there exists unique (−x,−y) ∈ Z, where −x is the inverse vector of x in

space X, x+(−x) = ~0X , and −y is the inverse vector of y in space Y , y +(−y) = ~0Y .

Then (x, y) + (−x,−y) =
(
x + (−x), y + (−y)

)
= (~0X ,~0Y ) = ~0.

(d) 1 ∈ F, 1 · (x, y) = (1 · x, 1 · y) = (x, y), ∀α, β ∈ F, α
(
β(x, y)

)
= α(βx, βy) =

(αβx, αβy) = (αβ)(x, y).

(e)

α
(
(x1, y1) + (x2, y2)

)
= α(x1 + x2, y1 + y2) = (αx1 + αx2, αy1 + αy2)

= (αx1, αy1) + (αx2, αy2)

= α(x1, y1) + α(x2, y2),

and

(α + β)(x, y) =
(
(α + β)x, (α + β)y

)
= (αx + βx, αy + βy)

= (αx, αy) + (βx, βy) = α(x, y) + β(x, y).

So Z = X × Y is a vector space indeed.
To prove that Z = X × Y is a normed space with the norm defined as this: ∀(x, y) ∈

Z = X × Y , x ∈ X, y ∈ Y , the norm ‖(x, y)‖ = ‖x‖1 + ‖y‖2.

(a) Since ‖ · ‖1 and ‖ · ‖2 are the norms of X, Y respectively, ‖(x, y)‖ = ‖x‖1 + ‖y‖2 ≥ 0.

2



(b) If some vector (x, y) ∈ Z, s.t. ‖(x, y)‖ = 0, from the definition, ‖(x, y)‖ = ‖x‖1 +

‖y‖2 = 0, it must be ‖x‖1 = 0 and ‖y‖2 = 0, which mean x = ~0X , and y = ~0Y , that

is (x, y) = (~0X ,~0Y ) = ~0 be the zero vector of Z. On the other side, for zero vector

(~0X ,~0Y ) ∈ Z, ‖(~0X ,~0Y )‖ = ‖~0X‖1 + ‖~0Y ‖2 = 0 + 0 = 0.

(c) For any α ∈ F, and any (x, y) ∈ Z, ‖α(x, y)‖ = ‖(αx, αy)‖ = ‖αx‖1 + ‖αy‖2 =
|α|‖x‖1 + |α|‖y‖2 = |α|(‖x‖1 + ‖y‖2) = |α|‖(x, y)‖.

(d) For any (x, y) ∈ Z, (x′, y′) ∈ Z,

‖(x, y) + (x′, y′)‖ = ‖(x + x′, y + y′)‖ = ‖x + x′‖1 + ‖y + y′‖2

≤ (‖x‖1 + ‖x′‖1) + (‖y‖2 + ‖y′‖2)

= (‖x‖1 + ‖y‖2) + (‖x′‖1 + ‖y′‖2)

= ‖(x, y)‖+ ‖(x′, y′)‖.

IV.
Proof . The norm in space CR([0, 1]) is defined as:

‖f‖ = sup{|f(x)| |x ∈ [0, 1]}.
For function fn(x) = xn, ‖fn(x)‖ = sup{|xn| |x ∈ [0, 1]} = 1.

The norm in space L1([0, 1]) is defined as:

‖f‖p =

∫ 1

0

|f |dm.

So

‖fn(x)‖ =

∫

[0,1]

|fn(x)|dm =

∫

[0,1]

xndm =

∫ 1

0

xndx =
1

n + 1
.
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