- 1. Proof the third example on page 25.
- 2. Prove Theorem 4.7 (c).
- 3. Let \mathcal{P} be the vector space of polynomials defined on [0, 1]. As \mathcal{P} is a linear subspace of $\mathcal{C}_{\mathbb{F}}([0, 1])$ it has a norm $\|p\|_1 = \sup\{|p(x)| : x \in [0, 1]\}$ and as \mathcal{P} is a linear subspace of $L^1[0, 1]$ it has another norm $\|p\|_2 = \int_0^1 |p(x)| dx$. Show that $\|\cdot\|_1$ and $\|\cdot\|_2$ are not equivalent on \mathcal{P} .
- 4. Find in the space $\mathcal{C}_{\mathbb{R}}([0,1])$ equipped with the standard norm

$$||f|| = \sup\{|f(x)| : x \in [0,1]\}$$

a bounded sequence which has not converging subsequences.

5. Show that in the space $\mathcal{C}_{\mathbb{R}}([0,1])$ the norms

$$||f||_1 = \int_0^1 (1-t)|f(t)|dt$$

and

$$||f||_2 = \int_0^1 (1 - t^3) |f(t)| dt$$

are equivalent.

6. Introduce

$$c = \left\{ \{x_n\}_{n=1}^{\infty} : x_n \in \mathbb{R}, \exists \lim_{n \to \infty} x_n \right\}$$

and

$$c_0 = \{\{x_n\}_{n=1}^{\infty} : x_n \in \mathbb{R}, \lim_{n \to \infty} x_n = 0\}.$$

Prove true or false:

(i) $c_0 \subset l^1$,

(ii) If
$$\{a_n\}_{n=1}^{\infty} \in l^p$$
 and $\{b_n\}_{n=1}^{\infty} \in l^{\frac{p}{p-1}}$, where $1 , then $\{a_n b_n\}_{n=1}^{\infty} \in l^1$,$

(iii) If $x \in c$, then there exists such $y \in c$ that $x + y \in c_0$.