Analysis IV Exercise 13 10. 5. 2004

1. If $T: C_{\mathbb{R}}[0,1] \to \mathbb{R}$ is the linear transformation defined by

$$T(f) = \int_0^1 f(x) dx$$

show that T is continuous.

- 2. Let $h \in L^{\infty}[0, 1]$.
 - (a) If f is in $L^{2}[0, 1]$, show that $fh \in L^{2}[0, 1]$.
 - (b) Let $T: L^2[0,1] \to L^2[0,1]$ be the linear transformation defined by T(f) = hf. Show that T is continuous.
- 3. Let \mathcal{H} be a complex Hilbert space and let $y \in \mathcal{H}$. Show that the linear transformation $f: \mathcal{H} \to \mathbb{C}$ defined by

$$f(x) = \langle x, y \rangle$$

is continuous.

4. (a) If $(x_1, x_2, x_3, x_4, \dots) \in l^2$, show that

$$(0, 4x_1, x_2, 4x_3, x_4, \cdots) \in l^2.$$

(b) Let $T: l^2 \to l^2$ be the linear transformation defined by

$$T(x_1, x_2, x_3, x_4, \cdots) = (0, 4x_1, x_2, 4x_3, x_4, \cdots).$$

Show that T is continuous.