Answers to Exercise 2

I.

Proof. For any $\alpha, \beta \in \mathbb{C}$, and any $x, y, z \in l^1, x = \{x_1, x_2, \dots\}, y = \{y_1, y_2, \dots\}, z =$ $\{z_1, z_2, \dots\}$, we have the followings:

1.
$$
x + y = \{x_1 + y_1, x_2 + y_2, \dots\} = \{y_1 + x_1, y_2 + x_2, \dots\} = y + x
$$
; and
\n
$$
x + (y + z) = \{x_1, x_2, \dots\} + \{y_1 + z_1, y_2 + z_2, \dots\}
$$
\n
$$
= \{x_1 + (y_1 + z_1), x_2 + (y_2 + z_2), \dots\}
$$
\n
$$
= \{x_1 + y_1 + z_1, x_2 + y_2 + z_2, \dots\}
$$
\n
$$
= \{(x_1 + y_1) + z_1, (x_2 + y_2) + z_2, \dots\}
$$
\n
$$
= \{x_1 + y_1, x_2 + y_2, \dots\} + \{z_1, z_2, \dots\}
$$
\n
$$
= (x + y) + z
$$

2. $\overline{0} = \{0, 0, \dots\} \in l^1$, such that $x + \overline{0} = \{x_1 + 0, x_2 + 0, \dots\} = \{x_1, x_2, \dots\} = x;$

3. $-1 \cdot x = -x = \{-x_1, -x_2, \dots \} \in l^1$, such that $x + (-x) = \{x_1 + (-x_1), x_2 + (-x_2)\}$ $(-x_2), \dots$ } = {0, 0, \dots } = $\overline{0}$;

4. $1 \cdot x = \{1 \cdot x_1, 1 \cdot x_2, \dots \} = \{x_1, x_2, \dots \} = x;$ and $\alpha(\beta x) = \alpha \{\beta x_1, \beta x_2, \dots \} = x$ $\alpha \cdot \beta \{x_1, x_2, \cdots \} = \alpha \beta x;$

5.

$$
\alpha(x + y) = \alpha \{x_1 + y_1, x_2 + y_2, \cdots\} \n= {\alpha(x_1 + y_1), \alpha(x_2 + y_2), \cdots} \n= {\alpha x_1 + \alpha x_2, \cdots} + {\alpha y_1 + \alpha y_2, \cdots} \n= \alpha \{x_1, x_2, \cdots\} + \alpha \{y_1, y_2, \cdots\} \n= \alpha x + \alpha y
$$

and

$$
(\alpha + \beta)x = (\alpha + \beta)\{x_1, x_2, \cdots\}
$$

= { $(\alpha + \beta)x_1, (\alpha + \beta)x_2, \cdots$ }
= { $\alpha x_1 + \beta x_1, \alpha x_2 + \beta x_2, \cdots$ }
= { $\alpha x_1, \alpha x_2, \cdots$ } + { $\beta x_1, \beta x_2, \cdots$ }
= $\alpha x + \beta x.$

So l^1 is a vector space.

Besides, since l^1 is the set of such infinite sequences $\{x_1, x_2, \dots\}$, $x_n \in \mathbb{C}$, the basis of l^1 is $\{e_i\}_{i=1}^{\infty}$, where $e_i = \{0, \dots, 1_i, \dots\}$, it means any finite set $\{e_i\}_{i=1}^k$ is linearly independent for any $k \in \mathbb{N}$, so dim $l^1 \geq k$, for any $k \in \mathbb{N}$, then we get dim $l^1 = \infty$. Thus l^1 is an infinite dimensional vector space.

II.

Proof. When $k = 1$, $(|a_1||b_1|)^2 \leq |a_1|^2 |b_1|^2$; If, when $k = m$, the inequality

$$
\left(\sum_{j=1}^m |a_j||b_j|\right)^2 \le \left(\sum_{j=1}^m |a_j|^2\right) \left(\sum_{j=1}^k |b_j|^2\right)
$$

holds for $1 < m < k,$ then, when $k = m+1,$

$$
\left(\sum_{j=1}^{m+1} |a_j||b_j|\right)^2 = \left(\sum_{j=1}^m |a_j||b_j| + |a_{m+1}||b_{m+1}|\right)^2
$$

=
$$
\left(\sum_{j=1}^m |a_j||b_j|\right)^2 + 2|a_{m+1}||b_{m+1}|\sum_{j=1}^m |a_j||b_j| + |a_{m+1}|^2|b_{m+1}|^2
$$

$$
\leq \left(\sum_{j=1}^m |a_j|^2\right)\left(\sum_{j=1}^m |b_j|^2\right) + 2|a_{m+1}||b_{m+1}|\sum_{j=1}^m |a_j||b_j| + |a_{m+1}|^2|b_{m+1}|^2.
$$

Since

$$
\sum_{j=1}^m |a_j||b_j| \le \sum_{j=1}^m |a_j| \sum_{j=1}^m |b_j| \,,
$$

and since

$$
0 < (|b_{m+1}| \sum_{j=1}^{m} |a_j| - |a_{m+1}| \sum_{j=1}^{m} |b_j|)^2
$$

\n
$$
= |b_{m+1}|^2 \Big(\sum_{j=1}^{m} |a_j| \Big)^2 - 2|a_{m+1}||b_{m+1}| \sum_{j=1}^{m} |a_j| \sum_{j=1}^{m} |b_j| + |a_{m+1}|^2 \Big(\sum_{j=1}^{m} |b_j| \Big)^2
$$

\n
$$
\leq |b_{m+1}|^2 \sum_{j=1}^{m} |a_j|^2 - 2|a_{m+1}||b_{m+1}| \sum_{j=1}^{m} |a_j| \sum_{j=1}^{m} |b_j| + |a_{m+1}|^2 \sum_{j=1}^{m} |b_j|^2,
$$

we get

$$
2|a_{m+1}||b_{m+1}| \sum_{j=1}^m |a_j| \sum_{j=1}^m |b_j| \le |a_{m+1}|^2 \sum_{j=1}^m |b_j|^2 + |b_{m+1}|^2 \sum_{j=1}^m |a_j|^2.
$$

So

$$
\left(\sum_{j=1}^{m+1} |a_j||b_j|\right)^2 \leq \left(\sum_{j=1}^m |a_j|^2\right) \left(\sum_{j=1}^m |b_j|^2\right) + |a_{m+1}|^2 \sum_{j=1}^m |b_j|^2 + |b_{m+1}|^2 \sum_{j=1}^m |a_j|^2 + |a_{m+1}|^2 |b_{m+1}|^2
$$

\n
$$
= \left(\sum_{j=1}^m |a_j|^2 + |a_{m+1}|^2\right) \left(\sum_{j=1}^m |b_j|^2 + |b_{m+1}|^2\right)
$$

\n
$$
= \left(\sum_{j=1}^{m+1} |a_j|^2\right) \left(\sum_{j=1}^{m+1} |b_j|^2\right),
$$

where $a_j, b_j \in \mathbb{C}, j = 1, \dots, k$.

By induction, we obtain the Schwarz inequality:

$$
\left(\sum_{j=1}^k |a_j||b_j|\right)^2 \le \left(\sum_{j=1}^k |a_j|^2\right) \left(\sum_{j=1}^k |b_j|^2\right).
$$

III.

Proof. $\{x_n\}$ is a convergent sequence in a metric space (M, d) and there exists a unique $x \in M$, such that $\lim_{n \to \infty} x_n = x$.

To show (b): If $\{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}$, we want to show that $x_{n_k} \longrightarrow x$.

Since $\lim_{n\to\infty} x_n = x$, for any $\varepsilon > 0$, there exist a $N_{\varepsilon} \in N$, when $n > N_{\varepsilon}$, $d(x_n, x) < \varepsilon$.

In case of the subsequence $\{x_{n_k}\}_{k=1}^{\infty}$, for the above ε and the N_{ε} , when $n_k > N_{\varepsilon}$, we will also have $d(x_{n_k}, x) < \varepsilon$, so $\lim_{n_k \to \infty} x_{n_k} = x$.

To show (c): For any $\varepsilon > 0$, there exist $N_{\varepsilon} \in N$, when $n > N_{\varepsilon}$, $d(x_n, x) < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$. Then for all $m, n > N_{\varepsilon}$,

$$
d(x_m, x_n) \le d(x_m, x) + d(x_n, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \,,
$$

so $\{x_n\}$ is a Cauchy sequence.

IV.

Proof. (i). {f continuous on M (means f is continuous at each point of M) \Rightarrow \forall open set $A \subset N$, $f^{-1}(A) \subset M$ is open. }

 $\forall x \in f^{-1}(A)$, there exists a $y \in A$, s.t. $f(x) = y$. Since A is an open set, there exists a ε_0 s.t. $B_N(y, \varepsilon_0) \subset A$. Since f is continuous, from the definition of continuity, we know that for the above $\varepsilon_0 > 0$, there exists a $\delta > 0$, s.t. $f(B_M(x, \delta)) \subset B_N(y, \varepsilon_0) \subset A$, that is $B_M(x, \delta) \subset f^{-1}(A)$, it means that $f^{-1}(A)$ is open.

 \Leftarrow : On the contrary, if f is not continuous on M, according to the definition there exists at least one point $x \in M$, s.t. f is not continuous at x, it means there exists a $\varepsilon_0 > 0$, s.t. for any $\delta > 0$, $f(B_M(x, \delta))$ is not the subset of $B_N(f(x), \varepsilon_0)$. We know $B_N(f(x), \varepsilon_0)$ is an open set of N, and it is obvious that $x \in f^{-1}(B_N(f(x), \varepsilon_0))$, but, there is no $\delta > 0$, satisfies $f(B_M(x, \delta)) \subset B_N(f(x), \varepsilon_0)$, which means no $\delta > 0$, such that $B_M(x, \delta) \subset$ $f^{-1}(B_N(f(x),\varepsilon))$, it is a contradictory to the condition that $f^{-1}(B_N(f(x),\varepsilon_0))$ is open set. So f must be continuous.

(ii). { f is continuous \Rightarrow for any closed set \cdots }

For any $x \in M \backslash f^{-1}(A), f(x) \notin A, f(x) \in N \backslash A$. Since A is closed, $N \backslash A$ is open, then there exists a $\varepsilon > 0$, s.t. $B_N(f(x), \varepsilon) \subset N \backslash A$, it is obvious that $x \in f^{-1}(B_N(f(x), \varepsilon))$. From the continuity of f, we know, for the above ε , there exists a $\delta > 0$, such that $f(B_M(x,\delta)) \subset B_N(f(x),\varepsilon)$, with this, we get $f(x') \in N \backslash A$, for any $x' \in B_M(x,\delta)$, thus $x' \in M \backslash f^{-1}(A)$, that is $B_M(x, \delta) \subset M \backslash f^{-1}(A)$. From the arbitrariness of x, we obtain that $M \setminus f^{-1}(A)$ is open, that is $f^{-1}(A)$ is closed.

 \Leftarrow : We can use the same method as in (i), but now we can also employ the conclusion of (i), for it has been proved. Since $A \subset N$ is closed, $N \setminus A$ is open, and $f^{-1}(A) \subset M$ is closed, $M\setminus f^{-1}(A) = f^{-1}(N\setminus A)$ is open, then according to (i), we immediately get f is continuous.

V. **Proof.** $\{d : l^1 \times l^1 \to \mathbb{R}, \text{ for any } x = \{x_n\} \in l^1, y = \{y_n\} \in l^1, d(\{x_n\}, \{y_n\}) =$ \approx $n=1$ $|x_n - y_n|$, to show that d is a metric. }

- 1. $d(x, y) = d({x_n}, {y_n}) = \sum^{\infty}$ $n=1$ $|x_n - y_n| \geq 0;$
- 2. $d(x, y) = \sum_{n=0}^{\infty}$ $n=1$ $|x_n - y_n| = 0 \Rightarrow x_n = y_n, n = 1, 2, \dots$, then $\{x_n\} = \{y_n\}$, that is $x = y$; and if $x = y$, that is $\{x_n\} = \{y_n\}$, $x_n = y_n$, $n \in N$, $d(x, y) = \sum_{n=1}^{\infty}$ $n=1$ $|x_n - y_n| =$ \approx $n=1$ $|x_n - x_n| = 0;$ 3. $d(x, y) = \sum^{\infty}$ $n=1$ $|x_n - y_n| =$ \approx $n=1$ $|y_n - x_n| = d({y_n}, {x_n}) = d(y, x);$ 4. $d(x, z) = d({x_n}, {z_n}) = \sum^{\infty}$ $n=1$ $|x_n - z_n| \leq \sum_{n=1}^{\infty}$ $n=1$ $|x_n - y_n + y_n - z_n| \leq \sum_{n=1}^{\infty}$ $n=1$ $(|x_n - y_n| + |y_n$ $z_n|) = \sum_{n=0}^{\infty}$ $n=1$ $|x_n - y_n| +$ \approx $n=1$ $|y_n - z_n| = d(x, y) + d(y, z),$

so, d is a metric.

VI.

Proof. First to show that the closure is closed. From the definition of closure,

 $\overline{E} = E \cup E' = E \cup \{all the accumulate points of E\},\$

accumulate points a of E refers to such kind of points, which satisfy ${B(a, r) \setminus a}$ \overline{a} $E \neq \emptyset$, for any $r > 0$. We consider the complement of \overline{E} , denoted by \overline{E}^- , for any point $x \in \overline{E}^-$, there must exist $\delta > 0$, s.t. $B(x, \delta) \cap \overline{E} = \emptyset$, otherwise, if there exists no such δ , then $x \in \bar{E}'$, that means $B(x, \delta) \cap \bar{E} \neq \emptyset$, for any $\delta > 0$, it means there exists $x \neq y \in \bar{E}$, $y \in \bar{E}$ $B(x, \delta)$, then denote $r_1 = d(x, y)$, and $r_2 = d(y, B(x, \delta))$, choose $r_\delta = \min\{r_1, r_2\}$, we get $B(y, r_\delta) \subset B(x, \delta)$, since $y \in \overline{E}$, there must exist point $z \in E$, s.t. $z \in B(y, r_\delta) \subset B(x, \delta)$, which is impossible since $x \notin \overline{E}$. So from the arbitrariness of x, we know that \overline{E}^- is open, which is impossible since $x \notin E$. So from the arbitrariness of x, we know that E_{I} then \overline{E} is closed. That is $\overline{E} \in \{F | E \subset F, F \text{ is closed}\}$, then we obtain $\bigcap F \subseteq \overline{E}$.

On the other side, for any $x \in \overline{E}$, $x \in E$, or x is the accumulate point of E, if $x \in E$, then $x \in F$, for any $F \supset E$, so $x \in$ $\tilde{\zeta}$ E⊂F F ; if x is the accumulate point of E , we also know $x \in F$, since F is closed, and $E \subset F$, the accumulate point of the subset of F must belong to F, for any closed $F \supset E$, so $x \in$ E⊂F *F*. Thus $\overline{E} \subseteq$ E⊂F F. We finish the proof.