
Answers to Exercise 2

I.
Proof . For any α, β ∈ C, and any x, y, z ∈ l1, x = {x1, x2, · · · }, y = {y1, y2, · · · }, z =

{z1, z2, · · · }, we have the followings:

1. x + y = {x1 + y1, x2 + y2, · · · } = {y1 + x1, y2 + x2, · · · } = y + x; and

x + (y + z) = {x1, x2, · · · }+ {y1 + z1, y2 + z2, · · · }
= {x1 + (y1 + z1), x2 + (y2 + z2), · · · }
= {x1 + y1 + z1, x2 + y2 + z2, · · · }
= {(x1 + y1) + z1, (x2 + y2) + z2, · · · }
= {x1 + y1, x2 + y2, · · · }+ {z1, z2, · · · }
= (x + y) + z

2. 0̄ = {0, 0, · · · } ∈ l1, such that x + 0̄ = {x1 + 0, x2 + 0, · · · } = {x1, x2, · · · } = x;

3. −1 · x = −x = {−x1,−x2, · · · } ∈ l1, such that x + (−x) = {x1 + (−x1), x2 +
(−x2), · · · } = {0, 0, · · · } = 0̄;

4. 1 · x = {1 · x1, 1 · x2, · · · } = {x1, x2, · · · } = x; and α(βx) = α{βx1, βx2, · · · } =
α · β{x1, x2, · · · } = αβx;

5.

α(x + y) = α{x1 + y1, x2 + y2, · · · }
= {α(x1 + y1), α(x2 + y2), · · · }
= {αx1 + αx2, · · · }+ {αy1 + αy2, · · · }
= α{x1, x2, · · · }+ α{y1, y2, · · · }
= αx + αy

and

(α + β)x = (α + β){x1, x2, · · · }
= {(α + β)x1, (α + β)x2, · · · }
= {αx1 + βx1, αx2 + βx2, · · · }
= {αx1, αx2, · · · }+ {βx1, βx2, · · · }
= αx + βx.

So l1 is a vector space.

Besides, since l1 is the set of such infinite sequences {x1, x2, · · · }, xn ∈ C, the basis of l1

is {ei}∞i=1, where ei = {0, · · · , 1i, · · · }, it means any finite set {ei}k
i=1 is linearly independent

for any k ∈ N, so dim l1 ≥ k, for any k ∈ N, then we get dim l1 = ∞. Thus l1 is an infinite
dimensional vector space.
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II.
Proof. When k = 1, (|a1||b1|)2 ≤ |a1|2|b1|2; If, when k = m, the inequality

( m∑
j=1

|aj||bj|
)2

≤
( m∑

j=1

|aj|2
)
(

k∑
j=1

|bj|2)

holds for 1 < m < k, then, when k = m + 1,

( m+1∑
j=1

|aj||bj|
)2

=
( m∑

j=1

|aj||bj|+ |am+1||bm+1|
)2

=
( m∑

j=1

|aj||bj|
)2

+ 2|am+1||bm+1|
m∑

j=1

|aj||bj|+ |am+1|2|bm+1|2

≤
( m∑

j=1

|aj|2
)( m∑

j=1

|bj|2
)

+ 2|am+1||bm+1|
m∑

j=1

|aj||bj|+ |am+1|2|bm+1|2 .

Since
m∑

j=1

|aj||bj| ≤
m∑

j=1

|aj|
m∑

j=1

|bj| ,

and since

0 <
(
|bm+1|

m∑
j=1

|aj| − |am+1|
m∑

j=1

|bj|
)2

= |bm+1|2
( m∑

j=1

|aj|
)2

− 2|am+1||bm+1|
m∑

j=1

|aj|
m∑

j=1

|bj|+ |am+1|2
( m∑

j=1

|bj|
)2

≤ |bm+1|2
m∑

j=1

|aj|2 − 2|am+1||bm+1|
m∑

j=1

|aj|
m∑

j=1

|bj|+ |am+1|2
m∑

j=1

|bj|2 ,

we get

2|am+1||bm+1|
m∑

j=1

|aj|
m∑

j=1

|bj| ≤ |am+1|2
m∑

j=1

|bj|2 + |bm+1|2
m∑

j=1

|aj|2 .

So

( m+1∑
j=1

|aj||bj|
)2

≤
( m∑

j=1

|aj|2
)( m∑

j=1

|bj|2
)

+ |am+1|2
m∑

j=1

|bj|2 + |bm+1|2
m∑

j=1

|aj|2 + |am+1|2|bm+1|2

=
( m∑

j=1

|aj|2 + |am+1|2
)( m∑

j=1

|bj|2 + |bm+1|2
)

=
( m+1∑

j=1

|aj|2
)( m+1∑

j=1

|bj|2
)

,
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where aj, bj ∈ C, j = 1, · · · , k.
By induction, we obtain the Schwarz inequality:

( k∑
j=1

|aj||bj|
)2

≤
( k∑

j=1

|aj|2
)( k∑

j=1

|bj|2
)
.

III.
Proof. {xn} is a convergent sequence in a metric space (M,d) and there exists a unique

x ∈ M , such that lim
n→∞

xn = x .

To show (b): If {xnk
}∞k=1 ⊂ {xn}, we want to show that xnk

−→ x.
Since lim

n→∞
xn = x, for any ε > 0, there exist a Nε ∈ N , when n > Nε, d(xn, x) < ε.

In case of the subsequence {xnk
}∞k=1, for the above ε and the Nε, when nk > Nε, we will

also have d(xnk
, x) < ε, so lim

nk→∞
xnk

= x.

To show (c): For any ε > 0, there exist Nε ∈ N , when n > Nε, d(xn, x) < ε
2
. Then for

all m,n > Nε,

d(xm, xn) ≤ d(xm, x) + d(xn, x) <
ε

2
+

ε

2
= ε ,

so {xn} is a Cauchy sequence.
IV.
Proof. (i). {f continuous on M (means f is continuous at each point of M ) ⇒ ∀ open

set A ⊂ N, f−1(A) ⊂ M is open. }
∀x ∈ f−1(A), there exists a y ∈ A, s.t. f(x) = y. Since A is an open set, there exists

a ε0 s.t. BN(y, ε0) ⊂ A. Since f is continuous, from the definition of continuity, we know
that for the above ε0 > 0, there exists a δ > 0, s.t. f(BM(x, δ)) ⊂ BN(y, ε0) ⊂ A, that is
BM(x, δ) ⊂ f−1(A), it means that f−1(A) is open.
⇐: On the contrary, if f is not continuous on M , according to the definition there exists

at least one point x ∈ M , s.t. f is not continuous at x, it means there exists a ε0 > 0,
s.t. for any δ > 0, f(BM(x, δ)) is not the subset of BN(f(x), ε0). We know BN(f(x), ε0)

is an open set of N , and it is obvious that x ∈ f−1
(
BN(f(x), ε0)

)
, but, there is no

δ > 0, satisfies f(BM(x, δ)) ⊂ BN(f(x), ε0), which means no δ > 0, such that BM(x, δ) ⊂
f−1

(
BN(f(x), ε)

)
, it is a contradictory to the condition that f−1

(
BN(f(x), ε0)

)
is open

set. So f must be continuous.
(ii). { f is continuous ⇒ for any closed set · · · }
For any x ∈ M\f−1(A), f(x) /∈ A, f(x) ∈ N\A. Since A is closed, N\A is open, then

there exists a ε > 0, s.t. BN(f(x), ε) ⊂ N\A, it is obvious that x ∈ f−1
(
BN(f(x), ε)

)
.

From the continuity of f , we know, for the above ε, there exists a δ > 0, such that
f(BM(x, δ)) ⊂ BN(f(x), ε), with this, we get f(x′) ∈ N\A, for any x′ ∈ BM(x, δ), thus
x′ ∈ M\f−1(A),that is BM(x, δ) ⊂ M\f−1(A). From the arbitrariness of x, we obtain that
M\f−1(A) is open, that is f−1(A) is closed.
⇐: We can use the same method as in (i), but now we can also employ the conclusion

of (i), for it has been proved. Since A ⊂ N is closed, N\A is open, and f−1(A) ⊂ M is
closed, M\f−1(A) = f−1(N\A) is open, then according to (i), we immediately get f is
continuous.
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V.
Proof.{d : l1 × l1 → R, for any x = {xn} ∈ l1, y = {yn} ∈ l1, d({xn}, {yn}) =

∞∑
n=1

|xn − yn|, to show that d is a metric. }

1. d(x, y) = d({xn}, {yn}) =
∞∑

n=1

|xn − yn| ≥ 0;

2. d(x, y) =
∞∑

n=1

|xn − yn| = 0 ⇒ xn = yn, n = 1, 2, · · · , then {xn} = {yn}, that is

x = y; and if x = y, that is {xn} = {yn}, xn = yn, n ∈ N, d(x, y) =
∞∑

n=1

|xn − yn| =

∞∑
n=1

|xn − xn| = 0;

3. d(x, y) =
∞∑

n=1

|xn − yn| =
∞∑

n=1

|yn − xn| = d({yn}, {xn}) = d(y, x);

4. d(x, z) = d({xn}, {zn}) =
∞∑

n=1

|xn− zn| ≤
∞∑

n=1

|xn−yn +yn− zn| ≤
∞∑

n=1

(|xn−yn|+ |yn−

zn|) =
∞∑

n=1

|xn − yn|+
∞∑

n=1

|yn − zn| = d(x, y) + d(y, z),

so, d is a metric.
VI.
Proof. First to show that the closure is closed. From the definition of closure,

Ē = E ∪ E ′ = E ∪ {all the accumulate points of E},
accumulate points a of E refers to such kind of points, which satisfy {B(a, r)\a}⋂

E 6= ∅,
for any r > 0. We consider the complement of Ē, denoted by Ē−, for any point x ∈ Ē−,
there must exist δ > 0, s.t. B(x, δ) ∩ Ē = ∅, otherwise, if there exists no such δ, then
x ∈ Ē ′, that means B(x, δ) ∩ Ē 6= ∅, for any δ > 0, it means there exists x 6= y ∈ Ē, y ∈
B(x, δ), then denote r1 = d(x, y), and r2 = d(y, B(x, δ)), choose rδ = min{r1, r2}, we get
B(y, rδ) ⊂ B(x, δ), since y ∈ Ē, there must exist point z ∈ E, s.t. z ∈ B(y, rδ) ⊂ B(x, δ),
which is impossible since x /∈ Ē. So from the arbitrariness of x, we know that Ē− is open,
then Ē is closed. That is Ē ∈ {F |E ⊂ F, F is closed}, then we obtain

⋂
E⊂F

F ⊆ Ē.

On the other side, for any x ∈ Ē, x ∈ E, or x is the accumulate point of E, if x ∈ E,
then x ∈ F , for any F ⊃ E, so x ∈ ⋂

E⊂F

F ; if x is the accumulate point of E, we also know

x ∈ F , since F is closed, and E ⊂ F , the accumulate point of the subset of F must belong
to F , for any closed F ⊃ E, so x ∈ ⋂

E⊂F

F . Thus Ē ⊆ ⋂
E⊂F

F . We finish the proof.
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