Answers to Exercise 3

I.

Proof. Step 1: to show $\{x : d(x, E) = 0\} \subset \overline{E}$. $\forall x \in \{x : d(x, E) = 0\}, d(x, E) = 0$ $inf_{y\in E}(x,y)=0$. If $x\in E$, it is obvious that $d(x,E)=0$; if $x\notin E$, we assert that x must be a cluster point of E, if not, there exists $\delta > 0$, such that $B_d(x, \delta) \cap E = \emptyset$, then $d(x, E) \geq \delta > 0$, which is contradictory to the given condition, so x must be a cluster of E.

Step 2: to show $\bar{E} \subset \{x : d(x,E) = 0\}$. $x \in \bar{E}, x \in E$, or x is the cluster of point E, if $x \in E, d(x, E) = 0$; if x is the cluster point of E, then for any $\varepsilon > 0$, there exists $y \in E$, s.t. $y \in B_d(x, \varepsilon)$, that is $d(x, y) < \varepsilon$, for any $\varepsilon > 0$, so $d(x, E) = \inf_{y \in E} d(x, y) = 0$,

 $x \in \{x : d(x, E) = 0\}.$ Thus $\{x : d(x, E) = 0\} = \overline{E}$.

II.

Proof . $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence in (M, d) . Let $\varepsilon = 1 > 0$, there exists $N^* \in \mathbb{N}$, s.t. $\forall m, n \ge N^*, d(x_m, x_n) < 1$, so if $k \ge N^*, d(x_k, x_1) \le d(x_k, x_{N^*}) + d(x_{N^*}, x_1) < 1 +$ $d(x_{N^*}, x_1);$ if $K \leq N^*$, denote $b = \max\{d(x_2, x_1), d(x_3, x_1), \cdots, d(x_{N^*}, x_1)\}, d(x_k, x_1) \leq b$, so there exists $R = max\{b, 1 + d(x_{N^*}, x_1)\},$ s.t. $\{x_n\}_{n=1}^{\infty} \subset B_d(x_1, R)$.

III.

Proof. Let $\{a_{n_k}\}_{k=1}^{\infty}$ be a subsequence of $\{a_n\}$ and $a_{n_k} \to a$, as $k \to \infty$, then for any $\varepsilon > 0$, there exists $N_{k,\varepsilon} \in \mathbb{N}$, s.t. for any $n_k \ge N_{k,\varepsilon}$, $d(a_{n_k}, a) < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$. Since $\{a_n\}$ is a Cauchy sequence, we know that, for the same $\varepsilon > 0$, there exists $N'_{\varepsilon} \in \mathbb{N}$, for any $m, n \ge N'_{\varepsilon}$, $d(a_m, a_n) < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$. Let $M_{\varepsilon} = \max(N_{k,\varepsilon}, N'_{\varepsilon})$, if $n \geq M_{\varepsilon}$, then $d(a_n, a) \leq d(a_n, a_{n_k}) + d(a_{n_k}, a)$ $\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, thus we get $\{a_n\} \longrightarrow a$, as $n \longrightarrow \infty$.

IV.

Proof. {Recall the definition of topology: Let X be a set, and Γ is a collection of subsets of X such that:

- 1. $\emptyset, X \in \Gamma$;
- 2. $G_{\alpha} \in \Gamma, (\alpha \in I),$ S $\alpha \in I$ $G_{\alpha} \in \Gamma$ (the union of any family of members of Γ is a member of Γ);
- 3. $G_k \in \Gamma$, $\sum_{n=1}^{m}$ $k=1$ $G_k \in \Gamma$ (the intersection of finitely many members of Γ is a member of Γ .)
- 1. $\emptyset, X \in \Gamma$;
- 2. $G_j \in \Gamma, X \setminus$ S j∈I $G_j =$ \overline{a} j∈I $X\backslash G_j$ is finite, since for each $j \in I$, $X\backslash G_j$ is finite, so S j∈I $G_j \in \Gamma;$
- 3. $X\setminus$ $\sum_{n=1}^{m}$ $j=1$ $G_j =$ \overline{m} $j=1$ $X\backslash G_j$ is finite, since $X\backslash G_j$ is finite for each $j, j = 1, \cdots, m$, so $\sum_{n=1}^{m}$ $j=1$ $G_j \in \Gamma$.

So, Γ is a topology of X, i.e. (X, Γ) is a topology space. V.

Proof. For any $x \in A$, let $V(x)$ be such neighbourhood of x that $V(x)$ contains only a countable number of points of A, then $A \subset \bigcup V(x)$, that is $\{V(x)\}_{x \in A}$ is a covering of A. According to Lindelöf covering theorem, A has a countable subcovering of $\{V(x)\}_{x\in A}$, denoted by $\{V_{\alpha}(x)\}_{{\alpha \in I}}, A \subset$ α∈I $V_{\alpha}(x)$, I is a countable set, and since for each $\alpha \in I$, $V_{\alpha}(x)$ includes countable number of points, so \bigcup $\alpha \in I$ $V_{\alpha}(x)$ also includes countable points. Thus A is countable.

VI.

Proof . X is a topological space, Γ is a topology of X, $G_x \in \Gamma$ denotes any element of Γ which includes the point $x. x \in A' = \{$ the cluster points of $A\} \iff \forall G_x, G_x \setminus \{x\} \cap A \neq \emptyset$ $\emptyset \Longleftrightarrow G_x$ $\tilde{ }$ $A \backslash \{x\} \neq \emptyset \Longleftrightarrow x \in A \backslash \{x\}.$