
Answers to Exercise 3

I.
Proof . Step 1: to show {x : d(x,E) = 0} ⊂ Ē. ∀x ∈ {x : d(x,E) = 0}, d(x,E) =

inf
y∈E

(x, y) = 0. If x ∈ E, it is obvious that d(x,E) = 0; if x /∈ E, we assert that x must

be a cluster point of E, if not, there exists δ > 0, such that Bd(x, δ) ∩ E = ∅, then
d(x, E) ≥ δ > 0, which is contradictory to the given condition, so x must be a cluster of
E.

Step 2: to show Ē ⊂ {x : d(x,E) = 0}. x ∈ Ē, x ∈ E, or x is the cluster of point
E, if x ∈ E, d(x,E) = 0; if x is the cluster point of E, then for any ε > 0, there exists
y ∈ E, s.t. y ∈ Bd(x, ε), that is d(x, y) < ε, for any ε > 0, so d(x,E) = inf

y∈E
d(x, y) = 0,

x ∈ {x : d(x,E) = 0}.
Thus {x : d(x,E) = 0} = Ē.
II.
Proof . {xn}∞n=1 be a Cauchy sequence in (M, d). Let ε = 1 > 0, there exists N∗ ∈ N,

s.t. ∀m,n ≥ N∗, d(xm, xn) < 1, so if k ≥ N∗, d(xk, x1) ≤ d(xk, xN∗) + d(xN∗ , x1) < 1 +
d(xN∗ , x1); if K ≤ N∗, denote b = max{d(x2, x1), d(x3, x1), · · · , d(xN∗ , x1)}, d(xk, x1) ≤ b,
so there exists R = max{b, 1 + d(xN∗ , x1)}, s.t. {xn}∞n=1 ⊂ Bd(x1, R).

III.
Proof . Let {ank

}∞k=1 be a subsequence of {an} and ank
→ a, as k →∞, then for any

ε > 0, there exists Nk, ε ∈ N, s.t. for any nk ≥ Nk, ε, d(ank
, a) < ε

2
. Since {an} is a Cauchy

sequence, we know that, for the same ε > 0, there exists N ′
ε ∈ N, for any m,n ≥ N ′

ε,
d(am, an) < ε

2
. Let Mε = max(Nk,ε, N

′
ε), if n ≥ Mε, then d(an, a) ≤ d(an, ank

)+d(ank
, a) <

ε
2

+ ε
2

= ε, thus we get {an} −→ a, as n −→∞.
IV.
Proof . {Recall the definition of topology: Let X be a set , and Γ is a collection of

subsets of X such that:

1. ∅, X ∈ Γ;

2. Gα ∈ Γ, (α ∈ I),
⋃

α∈I

Gα ∈ Γ (the union of any family of members of Γ is a member of

Γ);

3. Gk ∈ Γ,
m⋂

k=1

Gk ∈ Γ (the intersection of finitely many members of Γ is a member of Γ.}

1. ∅, X ∈ Γ;

2. Gj ∈ Γ, X\ ⋃
j∈I

Gj =
⋂
j∈I

X\Gj is finite, since for each j ∈ I, X\Gj is finite, so
⋃
j∈I

Gj ∈ Γ;

3. X\
m⋂

j=1

Gj =
m⋃

j=1

X\Gj is finite, since X\Gj is finite for each j, j = 1, · · · ,m, so

m⋂
j=1

Gj ∈ Γ.
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So, Γ is a topology of X, i.e. (X, Γ) is a topology space.
V.
Proof . For any x ∈ A, let V (x) be such neighbourhood of x that V (x) contains only

a countable number of points of A, then A ⊂ ⋃
V (x), that is {V (x)}x∈A is a covering of

A. According to Lindelöf covering theorem, A has a countable subcovering of {V (x)}x∈A,
denoted by {Vα(x)}α∈I , A ⊂ ⋃

α∈I

Vα(x), I is a countable set, and since for each α ∈ I, Vα(x)

includes countable number of points, so
⋃

α∈I

Vα(x) also includes countable points. Thus A

is countable.
VI.
Proof . X is a topological space, Γ is a topology of X, Gx ∈ Γ denotes any element of

Γ which includes the point x. x ∈ A′ = {the cluster points ofA} ⇐⇒ ∀Gx, Gx\{x}
⋂

A 6=
∅ ⇐⇒ Gx

⋂
A\{x} 6= ∅ ⇐⇒ x ∈ A\{x}.
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