Answers to Exercise 4

I
Proof . Let A be a subset of the metric space E. Step 1: to show {z : d(z, A) = 0} C A.
Ve € {z:d(z,A) = 0},d(z, A) = ing(x,y) =0. If x € A, it is obvious that d(z, A) = 0; if
ye

x ¢ A, we assert that x must be a cluster point of A, if not, there exists 6 > 0, such that
By(xz,0) N A =0, then d(z, A) > ¢ > 0, which is contradictory to the given condition, so x
must be a cluster of A.

Step 2: to show A C {z : d(xz,A) = 0}. * € A,z € A, or z is the cluster point of
A, if z € A, d(z, A) = 0; if = is the cluster point of A, then for any ¢ > 0, there exists
y € A, st. y € By(x,¢e), that is d(z,y) < ¢, for any € > 0, so d(z, A) = ;ggd(x,y) =0,

r € {xr:dxz,A) =0} B

Thus {x : d(xz,A) =0} = A.

II.

Proof . Let A = {E;}icr be a collection of open sets in R", E; N E; = 0,Vi,j € 1,
then A = |J E;, that is {E;}ies is the open covering of A. According to Lindel6f covering

iel

theorem, there exists subcovering of {F;};cr, denoted by {E,}nen, which is countable.
Since all F;,i € I are disjoint with each other, we know that {F;},c; = {E,}nen, that is
I=N.

ITI. B B

Proof . Method 1. AT. If f(A) is not included in f(A), then there exists x € A,

f(z) ¢ f(A), there exists ¢ > 0, s.t. B(f(z),e) € f(A) , since f(A) is closed.
So f(z) ¢ f(A), which means z ¢ A. On the other hand, if z € A'(= A\A), we have
a contradiction, since f~'(B(f(x)),e) is an open set, and f~'(B(f(x),e))\{z} A = 0,
which means = ¢ A’.

Method 2. Vy € f(A), there exists # € A, s.t. y = f(x), because f is continuous,
Ve > 0,36 > 0, s.t. f(B(z,9)) C B(y,e). Since x € A, there exists 2/ € B(x,6) (A (2/ =
v or o 2, f(2') € J(B(£.6)) C Bly.e), and f(z') € F(A), 50 Bly,=) (1 £(A) # 0, from
the arbitrariness of ¢, we know y € f(A), thus f(A4) C f(A).

Example: Choose f(x) = %, f is continuous, let A = N, then f(A) = {1,% TR P
bUtI{[( )_{1a2>37"' 7%7"' 70}7 f(A) #f(A)

Proof . f: X — R, we show that Z(f)~ is open. Vx € Z(f)~, f(x) # 0, take ¢ =
| f(x)] > 0, then for any y € B(f(z),¢) = (f(z) — ¢, f(x) +¢),y # 0, from the continuity
of f, there exists § > 0, s.t. f(B(z,9)) C B(f(x),¢), then for any 2’ € B(x, ), f(2') # 0,
that is 2’ € Z(f)~, which means B(z,d) C Z(f)~, thus Z(f)~ is open, Z(f) is closed.

Actually, we can apply theorem 1.17 (b)(ii), and get the conclusion immediately, since
single point set : {0} is a closed set.

V.

Proof . For any open intervals {J,} which such that B C | J,, A C |JJ,, since




A C B. From the definition of outer measure,

m*(A) = inf { Zl([n)| I,, is open intervals such that A C Uln},

we know that

m*(4) < 3 1(),

which is hold for any open covering of B, so m*(A) < inf{> I(J,)} = m*(B).

VI.
Proof . { Corollary 2.4: A C R, A is countable, then m*(A) = O}. A = {an}nen,
let I,, = (@n — 57,00 + 57), it is obvious that {I,}nen be the covering of A, A C (I,

[e.9]

according to the definition of outer measure, m*(A) < >"1(I,) = > 2 = 2¢, Ve > 0. So

n=1
m*(A) = 0.



