Answers to Exercise 4

I.

Proof. Let A be a subset of the metric space E. Step 1: to show $\{x : d(x, A) = 0\} \subset \overline{A}$. $\forall x \in \{x : d(x, A) = 0\}, d(x, A) = \inf_{y \in A} (x, y) = 0$. If $x \in A$, it is obvious that d(x, A) = 0; if $x \notin A$, we assert that x must be a cluster point of A, if not, there exists $\delta > 0$, such that $B_d(x, \delta) \cap A = \emptyset$, then $d(x, A) \ge \delta > 0$, which is contradictory to the given condition, so x must be a cluster of A.

Step 2: to show $\overline{A} \subset \{x : d(x, A) = 0\}$. $x \in \overline{A}, x \in A$, or x is the cluster point of A, if $x \in A, d(x, A) = 0$; if x is the cluster point of A, then for any $\varepsilon > 0$, there exists $y \in A$, s.t. $y \in B_d(x, \varepsilon)$, that is $d(x, y) < \varepsilon$, for any $\varepsilon > 0$, so $d(x, A) = \inf_{y \in A} d(x, y) = 0$,

 $x \in \{x : d(x, A) = 0\}.$

Thus $\{x : d(x, A) = 0\} = \overline{A}.$

II.

Proof. Let $A = \{E_i\}_{i \in I}$ be a collection of open sets in \mathbb{R}^n , $E_i \cap E_j = \emptyset$, $\forall i, j \in I$, then $A = \bigcup_{i \in I} E_i$, that is $\{E_i\}_{i \in I}$ is the open covering of A. According to Lindelöf covering theorem, there exists subcovering of $\{E_i\}_{i \in I}$, denoted by $\{E_n\}_{n \in N}$, which is countable.

Since all $E_i, i \in I$ are disjoint with each other, we know that $\{E_i\}_{i \in I} = \{E_n\}_{n \in N}$, that is $I = \mathbb{N}$.

III.

Proof. Method 1. <u>AT</u>. If $f(\overline{A})$ is not included in $\overline{f(A)}$, then there exists $x \in \overline{A}$, s.t. $f(x) \notin \overline{f(A)}$, there exists $\varepsilon > 0$, s.t. $B(f(x), \varepsilon) \subset \overline{f(A)}^-$, since $\overline{f(A)}$ is closed. So $f(x) \notin f(A)$, which means $x \notin A$. On the other hand, if $x \in A'(=\overline{A} \setminus A)$, we have a contradiction, since $f^{-1}(B(f(x)), \varepsilon)$ is an open set, and $f^{-1}(B(f(x), \varepsilon)) \setminus \{x\} \cap A = \emptyset$, which means $x \notin A'$.

Method 2. $\forall y \in f(\bar{A})$, there exists $x \in \bar{A}$, s.t. y = f(x), because f is continuous, $\forall \varepsilon > 0, \exists \delta > 0$, s.t. $f(B(x,\delta)) \subset B(y,\varepsilon)$. Since $x \in \bar{A}$, there exists $x' \in B(x,\delta) \bigcap A$ $(x' = x, \text{ or } x' \neq x)$, $f(x') \in f(B(x,\delta)) \subset B(y,\varepsilon)$, and $f(x') \in f(A)$, so $B(y,\varepsilon) \bigcap f(A) \neq \emptyset$, from the arbitrariness of ε , we know $y \in \overline{f(A)}$, thus $f(\bar{A}) \subset \overline{f(A)}$.

Example: Choose $f(x) = \frac{1}{x}$, f is continuous, let $A = \mathbb{N}$, then $f(\bar{A}) = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$, but $\overline{f(A)} = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots, 0\}$, $f(\bar{A}) \neq \overline{f(A)}$. **IV.**

Proof. $f: X \longrightarrow \mathbb{R}$, we show that $\mathbb{Z}(f)^-$ is open. $\forall x \in \mathbb{Z}(f)^-, f(x) \neq 0$, take $\varepsilon = \frac{1}{2}|f(x)| > 0$, then for any $y \in B(f(x), \varepsilon) = (f(x) - \varepsilon, f(x) + \varepsilon), y \neq 0$, from the continuity of f, there exists $\delta > 0$, s.t. $f(B(x, \delta)) \subset B(f(x), \varepsilon)$, then for any $x' \in B(x, \delta), f(x') \neq 0$, that is $x' \in \mathbb{Z}(f)^-$, which means $B(x, \delta) \subset \mathbb{Z}(f)^-$, thus $\mathbb{Z}(f)^-$ is open, $\mathbb{Z}(f)$ is closed.

Actually, we can apply theorem 1.17 (b)(ii), and get the conclusion immediately, since single point set : $\{0\}$ is a closed set.

v.

Proof. For any open intervals $\{J_n\}$ which such that $B \subset \bigcup_n J_n$, $A \subset \bigcup_n J_n$, since

 $A \subset B$. From the definition of outer measure,

$$m^*(A) = \inf \left\{ \sum_n l(I_n) | I_n \text{ is open intervals such that } A \subset \bigcup_n I_n \right\},$$

we know that

$$m^*(A) \le \sum_n l(J_n),$$

which is hold for any open covering of B, so $m^*(A) \leq \inf\{\sum_n l(J_n)\} = m^*(B)$.

VI. Proof . { Corollary 2.4: $A \subset \mathbb{R}$, A is countable, then $m^*(A) = 0$ }. $A = \{a_n\}_{n \in \mathbb{N}}$, let $I_n = (a_n - \frac{\varepsilon}{2^n}, a_n + \frac{\varepsilon}{2^n})$, it is obvious that $\{I_n\}_{n \in \mathbb{N}}$ be the covering of A, $A \subset \bigcup_n I_n$, according to the definition of outer measure, $m^*(A) \leq \sum_n l(I_n) = \sum_{n=1}^{\infty} \frac{2\varepsilon}{2^n} = 2\varepsilon$, $\forall \varepsilon > 0$. So $m^*(A) = 0$.