
Answers to Exercise 4

I.
Proof . Let A be a subset of the metric space E. Step 1: to show {x : d(x,A) = 0} ⊂ Ā.

∀x ∈ {x : d(x,A) = 0}, d(x,A) = inf
y∈A

(x, y) = 0. If x ∈ A, it is obvious that d(x,A) = 0; if

x /∈ A, we assert that x must be a cluster point of A, if not, there exists δ > 0, such that
Bd(x, δ)∩A = ∅, then d(x,A) ≥ δ > 0, which is contradictory to the given condition, so x
must be a cluster of A.

Step 2: to show Ā ⊂ {x : d(x,A) = 0}. x ∈ Ā, x ∈ A, or x is the cluster point of
A, if x ∈ A, d(x,A) = 0; if x is the cluster point of A, then for any ε > 0, there exists
y ∈ A, s.t. y ∈ Bd(x, ε), that is d(x, y) < ε, for any ε > 0, so d(x,A) = inf

y∈A
d(x, y) = 0,

x ∈ {x : d(x,A) = 0}.
Thus {x : d(x,A) = 0} = Ā.
II.
Proof . Let A = {Ei}i∈I be a collection of open sets in Rn, Ei ∩ Ej = ∅,∀i, j ∈ I,

then A =
⋃
i∈I

Ei, that is {Ei}i∈I is the open covering of A. According to Lindelöf covering

theorem, there exists subcovering of {Ei}i∈I , denoted by {En}n∈N , which is countable.
Since all Ei, i ∈ I are disjoint with each other, we know that {Ei}i∈I = {En}n∈N , that is
I = N.

III.
Proof . Method 1. AT. If f(Ā) is not included in f(A), then there exists x ∈ Ā,

s.t. f(x) /∈ f(A), there exists ε > 0, s.t. B(f(x), ε) ⊂ f(A)
−
, since f(A) is closed.

So f(x) /∈ f(A), which means x /∈ A. On the other hand, if x ∈ A′(= Ā\A), we have
a contradiction, since f−1(B(f(x)), ε) is an open set, and f−1(B(f(x), ε))\{x}⋂

A = ∅,
which means x /∈ A′.

Method 2. ∀y ∈ f(Ā), there exists x ∈ Ā, s.t. y = f(x), because f is continuous,
∀ε > 0,∃δ > 0, s.t. f(B(x, δ)) ⊂ B(y, ε). Since x ∈ Ā, there exists x′ ∈ B(x, δ)

⋂
A (x′ =

x, or x′ 6= x), f(x′) ∈ f(B(x, δ)) ⊂ B(y, ε), and f(x′) ∈ f(A), so B(y, ε)
⋂

f(A) 6= ∅, from

the arbitrariness of ε, we know y ∈ f(A), thus f(Ā) ⊂ f(A).
Example: Choose f(x) = 1

x
, f is continuous, let A = N, then f(Ā) = {1, 1

2
, 1

3
, · · · , 1

n
, · · · },

but f(A) = {1, 1
2
, 1

3
, · · · , 1

n
, · · · , 0}, f(Ā) 6= f(A).

IV.
Proof . f : X −→ R, we show that Z(f)− is open. ∀x ∈ Z(f)−, f(x) 6= 0, take ε =

1
2
|f(x)| > 0, then for any y ∈ B(f(x), ε) = (f(x)− ε, f(x) + ε), y 6= 0, from the continuity

of f , there exists δ > 0, s.t. f(B(x, δ)) ⊂ B(f(x), ε), then for any x′ ∈ B(x, δ), f(x′) 6= 0,
that is x′ ∈ Z(f)−, which means B(x, δ) ⊂ Z(f)−, thus Z(f)− is open, Z(f) is closed.

Actually, we can apply theorem 1.17 (b)(ii), and get the conclusion immediately, since
single point set : {0} is a closed set.

V.
Proof . For any open intervals {Jn} which such that B ⊂ ⋃

n

Jn, A ⊂ ⋃
n

Jn, since
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A ⊂ B. From the definition of outer measure,

m∗(A) = inf
{ ∑

n

l(In)| In is open intervals such that A ⊂
⋃
n

In

}
,

we know that
m∗(A) ≤

∑
n

l(Jn),

which is hold for any open covering of B, so m∗(A) ≤ inf{∑
n

l(Jn)} = m∗(B).

VI.
Proof .

{
Corollary 2.4: A ⊂ R, A is countable, then m∗(A) = 0

}
. A = {an}n∈N,

let In = (an − ε
2n , an + ε

2n ), it is obvious that {In}n∈N be the covering of A, A ⊂ ⋃
n

In,

according to the definition of outer measure, m∗(A) ≤ ∑
n

l(In) =
∞∑

n=1

2ε
2n = 2ε, ∀ε > 0. So

m∗(A) = 0.
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