Answers to Exercise 5

I.

Proof. $\{m^* \text{ is translation invariant, it means that for any } a \in \mathbb{R}, E \subset \mathbb{R}, a + E = \{a + x | x \in E\}, \text{ then } m^*(a + E) = m^*(E)\}.$

 $E \subset \mathbb{R}, m^*(E) = \inf \left\{ \sum_n l(I_n) | I_n \text{ is open intervals such that } E \subset \bigcup_n I_n \right\}$. Let's denote $I'_n = a + I_n = \{a + x | x \in I_n\}$, for any intervals $\{I_n\}_n$, s.t. $E \subset \bigcup_n I_n$. Then it is obvious that $a + E \subset \bigcup_n I'_n$. Further, for any n, $l(I'_n) = \sup\{|x' - y'|, x', y' \in I'_n\} = \sup\{|(a + x) - (a + y)|, x, y \in I_n\} = \sup\{|x - y|, x, y \in I_n\} = l(I_n)$, so $m^*(a + E) = \inf \left\{ \sum_n l(I'_n) | E \subset \bigcup_n I'_n \right\} = \inf \left\{ \sum_n l(I_n) | E \subset \bigcup_n I_n \right\} = m^*(E)$.

II.

Proof. $\{f_n\} \longrightarrow f$ means that $\sup\{|f_n(x) - f(x)| \mid x \in M\} \longrightarrow 0$. Put in another way, for any $\varepsilon > 0$, there exists a $N_1 \in \mathbb{N}$, when $n \geq N_1$, $|f_n(x) - f(x)| < \varepsilon$, for all $x \in M$. The same to g_n , for convenience, we may choose the same ε as above, then there also exists a $N_2 \in \mathbb{N}$, when $n \geq N_2$, $|g_n(x) - g(x)| < \varepsilon$, for all $x \in M$. Since the space C(M) is complete, $f \in C(M)$, and $g \in C(M)$, then $f + g \in C(M)$, we will show that $\{f_n + g_n\} \longrightarrow f + g$ in C(M). For any $\varepsilon > 0$, denote $N = \max\{N_1, N_2\}$, when $n \geq N$,

$$|(f_n(x) + g_n(x)) - (f(x) + g(x))| = |(f_n(x) - f(x)) + (g_n(x) - g(x))| < |f_n(x) - f(x)| + |g_n(x) - g(x)| < 2\varepsilon,$$

which equals to say that $\sup\{|(f_n(x) + g_n(x)) - (f(x) + g(x))| | x \in M\} \longrightarrow 0$. So $\{f_n + g_n\} \longrightarrow f + g$ uniformly.

Next we will show that $\{f_n\}$ is **uniformly** bounded on M, when n large enough. Let $\varepsilon = 1$, then there exists $N' \in \mathbb{N}$, when $n \geq N'$, $\sup_{x \in M} |f_n(x) - f(x)| < 1$, so

$$\sup_{x \in M} |f(x)| = \sup_{x \in M} \{ |f(x) - f_{N'}(x) + f_{N'}(x)| \}
\leq \sup_{x \in M} \{ |f_{N'}(x) - f(x)| + |f_{N'}(x)| \}
\leq \sup_{x \in M} \{ |f_{N'}(x) - f(x)| \} + \sup_{x \in M} \{ |f_{N'}(x)| \}
\leq 1 + K = D_1$$

(Note: it is easy to show that $\sup(A+B) \leq \sup A + \sup B$), for some finite constant $K = \sup_{x \in M} |f_{N'}(x)|, x \in M$. It is the same to g, that is there also exists D_2 , s.t. $|g(x)| \leq D_2$ for all $x \in M$.

Now for $n \geq N'$,

$$\sup_{x \in M} |f_n(x)| = \sup_{x \in M} |f_n(x) - f(x) + f(x)|$$

$$\leq \sup_{x \in M} |f_n(x) - f(x)| + \sup_{x \in M} |f(x)|$$

$$< 1 + 1 + K = 2 + K = C_1.$$

It is the same to $\{g_n\}$. There also exists some constant, and N'', s.t. when $n \geq N''$, $\sup_{x \in M} |g_n(x)| \leq C_2$.

Since $\{f_n\}$, and $\{g_n\}$ are convergent uniformly on M, for any $\varepsilon > 0$, there exists n_1, n_2 , when $n, m \ge n^* = \max\{n_1, n_2\}, |f_n(x) - f_m(x)| < \varepsilon$ and $|g_n(x) - g_m(x)| < \varepsilon$, for all $x \in M$. Then for $N^* = \max\{N', N'', n_1, n_2\}$, when $n, m \ge N^*$, for all $x \in M$,

$$|f_n g_n - f_m g_m| = |(f_n g_n - f_n g_m) + (f_n g_m - f_m g_m)|$$

$$\leq |f_n (g_n - g_m)| + |g_m (f_n - f_m)| = |f_n||g_n - g_m| + |g_m||f_n - f_m|$$

$$< C_1 \cdot \varepsilon + C_2 \cdot \varepsilon.$$

thus $\{f_ng_n\}$ converges uniformly on M.

Actually, since C(M) is complete, there must exist a function $H \in C(M)$, s.t. $\{f_n g_n\} \longrightarrow H$ uniformly, we show that H = fg. Because for all $x \in M$, and for all $n \geq N^{\#} = \max\{N_1, N_2, N'\}$,

$$|f_n g_n - fg| = |f_n g_n - f_n g + f_n g - fg| \le |f_n (g_n - g)| + |(f_n - f)g|$$

$$= |f_n||g_n - g| + |f_n - f||g|$$

$$< C_1 \cdot \varepsilon + D_2 \cdot \varepsilon,$$

which means $\{f_ng_n\} \longrightarrow fg$ uniformly, and from the uniqueness of limit, we know H = fg. III.

Proof. Apply the definition of uniform convergence directly.

$$\sup\left\{|f_n(x) - 0| \mid x \in [0, \infty[\right]\right\} \le \sup\left\{\frac{1}{n} \mid x \in [0, \infty[\right]\right\} = \frac{1}{n} \longrightarrow 0.$$

IV.

Proof. From theorem 2.3,

$$m^*(A \cup B) \le m^*(A) + m^*(B) = m^*(A).$$

On the other side, $A \subset A \cup B$, from the definition of outer measure,

$$m^*(A) \le m^*(A \cup B).$$

So $m^*(A \cup B) = m^*(A)$, if $m^*(B) = 0$.

 $\mathbf{V}.$

Proof. We know that

$$E_1 \cup E_2 = (E_1 \backslash E_2) \bigcup (E_1 \cap E_2) \bigcup (E_2 \backslash E_1),$$

since the three parts on the left are disjoint, we have

$$m(E_1 \cup E) = m(E_1 \setminus E_2) + m(E_1 \cap E_2) + m(E_2 \setminus E_1).$$

Then

$$m(E_1 \cup E) + m(E_1 \cap E_2) = \left[m(E_1 \backslash E_2) + m(E_1 \cap E_2) \right] + \left[m(E_2 \backslash E_1) + m(E_1 \cap E_2) \right]$$

= $m(E_1) + m(E_2)$.

VI.

Proof . First we proof

$$m^*\left(A\cap\left[\bigcup_{i=1}^n E_i\right]\right)=\sum_{i=1}^n m^*(A\cap E_i).$$

We prove the lemma by induction on n. It is clearly true for n=1, and we assume it is true if we have n-1 sets E_i . Since the E_i are disjoint sets, we have

$$A \cap \left[\bigcup_{i=1}^{n} E_i\right] \cap E_n = A \cap E_n$$

and

$$A \cap \left[\bigcup_{i=1}^{n} E_i\right] \cap E_n^- = A \cap \left[\bigcup_{i=1}^{n-1} E_i\right].$$

Hence the measurability of E_n implies

$$m^* \Big(A \cap \Big[\bigcup_{i=1}^n E_i \Big] \Big) = m^* \Big(A \cap \Big[\bigcup_{i=1}^n E_i \Big] \cap E_n \Big) + m^* \Big(A \cap \Big[\bigcup_{i=1}^n E_i \Big] \cap E_n^- \Big)$$

$$= m^* (A \cap E_n) + m^* \Big(A \cap \Big[\bigcup_{i=1}^{n-1} E_i \Big] \Big)$$

$$= m^* (A \cap E_n) + \sum_{i=1}^{n-1} m^* (A \cap E_i)$$

$$= \sum_{i=1}^n m^* (A \cap E_i)$$

by our assumption of the lemma for n-1 sets.

Next we consider the infinite union. Since
$$\bigcup_{i=1}^{\infty} E_i \supset \bigcup_{i=1}^{n} E_i$$
, for any set $A, A \cap \bigcup_{i=1}^{\infty} E_i \supset A \cap \bigcup_{i=1}^{n} E_i$, then

$$m^*(A \cap \bigcup_{i=1}^{\infty} E_i) \ge m^*(A \cap \bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} m^*(A \cap E_i),$$

which holds for any n, so

$$m^*(A \cap \bigcup_{i=1}^{\infty} E_i) \ge \sum_{i=1}^{\infty} m^*(A \cap E_i)$$
.

On the other side, since

$$A \cap \bigcup_{i=1}^{n} E_i = \bigcup_{i=1}^{n} A \cap E_i,$$

we know for all n,

$$m^* \left(A \cap \bigcup_{i=1}^n E_i \right) = m^* \left(\bigcup_{i=1}^n A \cap E_i \right) = \sum_{i=1}^n m^* (A \cap E_i) \le \sum_{i=1}^\infty m^* (A \cap E_i),$$

for $\{E_i\}$ are disjoint, $\{A\cap E_i\}$ are disjoint. Then

$$m^* \Big(A \cap \bigcup_{i=1}^{\infty} E_i \Big) \le \sum_{i=1}^{\infty} m^* (A \cap E_i).$$

Thus

$$m^* \Big(A \cap \Big[\bigcup_{i=1}^{\infty} E_i \Big] \Big) = \sum_{i=1}^{\infty} m^* (A \cap E_i).$$