
Answers to Exercise 5

I.
Proof . {m∗ is translation invariant, it means that for any a ∈ R, E ⊂ R, a + E =

{a + x|x ∈ E}, then m∗(a + E) = m∗(E)}.
E ⊂ R,m∗(E) = inf

{ ∑
n

l(In)| In is open intervals such that E ⊂ ⋃
n

In

}
. Let’s denote

I ′n = a + In = {a + x|x ∈ In}, for any intervals {In}n, s.t. E ⊂ ⋃
n

In. Then it is

obvious that a + E ⊂ ⋃
n

I ′n. Further, for any n, l(I ′n) = sup{|x′ − y′|, x′, y′ ∈ I ′n} =

sup{|(a + x) − (a + y)|, x, y ∈ In} = sup{|x − y|, x, y ∈ In} = l(In), so m∗(a + E) =

inf
{ ∑

n

l(I ′n)|E ⊂ ⋃
n

I ′n
}

= inf
{ ∑

n

l(In)|E ⊂ ⋃
n

In

}
= m∗(E).

II.
Proof . {fn} −→ f means that sup{|fn(x)−f(x)| |x ∈ M} −→ 0. Put in another way,

for any ε > 0, there exists a N1 ∈ N, when n ≥ N1, |fn(x)− f(x)| < ε, for all x ∈ M . The
same to gn, for convenience, we may choose the same ε as above, then there also exists a
N2 ∈ N, when n ≥ N2, |gn(x)−g(x)| < ε, for all x ∈ M . Since the space C(M) is complete,
f ∈ C(M), and g ∈ C(M), then f + g ∈ C(M), we will show that {fn + gn} −→ f + g in
C(M). For any ε > 0, denote N = max{N1, N2}, when n ≥ N ,

∣∣(fn(x) + gn(x)
)− (

f(x) + g(x)
)| =

∣∣(fn(x)− f(x)
)

+
(
gn(x)− g(x)

)∣∣
≤ |fn(x)− f(x)|+ |gn(x)− g(x)| < 2ε,

which equals to say that sup{|(fn(x) + gn(x)
) − (

f(x) + g(x)
)| |x ∈ M} −→ 0. So

{fn + gn} −→ f + g uniformly.
Next we will show that {fn} is uniformly bounded on M , when n large enough. Let

ε = 1, then there exists N ′ ∈ N, when n ≥ N ′, sup
x∈M

|fn(x)− f(x)| < 1, so

sup
x∈M

|f(x)| = sup
x∈M

{|f(x)− fN ′(x) + fN ′(x)|}
≤ sup

x∈M
{|fN ′(x)− f(x)|+ |fN ′(x)|}

≤ sup
x∈M

{|fN ′(x)− f(x)|}+ sup
x∈M

{|fN ′(x)|}
≤ 1 + K = D1

(
Note: it is easy to show that sup(A + B) ≤ sup A + sup B

)
, for some finite constant

K = sup
x∈M

|fN ′(x)|, x ∈ M . It is the same to g, that is there also exists D2, s.t. |g(x)| ≤ D2

for all x ∈ M .
Now for n ≥ N ′,

sup
x∈M

|fn(x)| = sup
x∈M

|fn(x)− f(x) + f(x)|
≤ sup

x∈M
|fn(x)− f(x)|+ sup

x∈M
|f(x)|

≤ 1 + 1 + K = 2 + K = C1 .
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It is the same to {gn}. There also exists some constant, and N ′′, s.t. when n ≥ N ′′,
sup
x∈M

|gn(x)| ≤ C2.

Since {fn}, and {gn} are convergent uniformly on M , for any ε > 0, there exists n1, n2,
when n,m ≥ n∗ = max{n1, n2}, |fn(x)−fm(x)| < ε and |gn(x)−gm(x)| < ε, for all x ∈ M .

Then for N∗ = max{N ′, N ′′, n1, n2}, when n,m ≥ N∗, for all x ∈ M ,

|fngn − fmgm| = |(fngn − fngm) + (fngm − fmgm)|
≤ |fn(gn − gm)|+ |gm(fn − fm)| = |fn||gn − gm|+ |gm||fn − fm|
≤ C1 · ε + C2 · ε .

thus {fngn} converges uniformly on M .
Actually, since C(M) is complete, there must exist a function H ∈ C(M), s.t. {fngn} −→

H uniformly, we show that H = fg. Because for all x ∈ M , and for all n ≥ N# =
max{N1, N2, N

′},
|fngn − fg| = |fngn − fng + fng − fg| ≤ |fn(gn − g)|+ |(fn − f)g|

= |fn||gn − g|+ |fn − f ||g|
≤ C1 · ε + D2 · ε ,

which means {fngn} −→ fg uniformly, and from the uniqueness of limit, we know H = fg.
III.
Proof . Apply the definition of uniform convergence directly.

sup
{|fn(x)− 0| |x ∈ [0,∞[

} ≤ sup
{ 1

n

∣∣∣x ∈ [0,∞[
}

=
1

n
−→ 0.

IV.
Proof . From theorem 2.3,

m∗(A ∪B) ≤ m∗(A) + m∗(B) = m∗(A).

On the other side, A ⊂ A ∪B, from the definition of outer measure,

m∗(A) ≤ m∗(A ∪B).

So m∗(A ∪B) = m∗(A), if m∗(B) = 0.
V.
Proof . We know that

E1 ∪ E2 = (E1\E2)
⋃

(E1 ∩ E2)
⋃

(E2\E1),

since the three parts on the left are disjoint, we have

m(E1 ∪ E) = m(E1\E2) + m(E1 ∩ E2) + m(E2\E1) .

Then

m(E1 ∪ E) + m(E1 ∩ E2) =
[
m(E1\E2) + m(E1 ∩ E2)

]
+

[
m(E2\E1) + m(E1 ∩ E2)

]

= m(E1) + m(E2).
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VI.
Proof . First we proof

m∗
(
A ∩

[ n⋃
i=1

Ei

])
=

n∑
i=1

m∗(A ∩ Ei) .

We prove the lemma by induction on n. It is clearly true for n = 1, and we assume it is
true if we have n− 1 sets Ei. Since the Ei are disjoint sets, we have

A ∩
[ n⋃

i=1

Ei

]
∩ En = A ∩ En

and

A ∩
[ n⋃

i=1

Ei

]
∩ E−

n = A ∩
[ n−1⋃

i=1

Ei

]
.

Hence the measurability of En implies

m∗
(
A ∩

[ n⋃
i=1

Ei

])
= m∗

(
A ∩

[ n⋃
i=1

Ei

]
∩ En

)
+ m∗

(
A ∩

[ n⋃
i=1

Ei

]
∩ E−

n

)

= m∗(A ∩ En) + m∗
(
A ∩

[ n−1⋃
i=1

Ei

])

= m∗(A ∩ En) +
n−1∑
i=1

m∗(A ∩ Ei)

=
n∑

i=1

m∗(A ∩ Ei)

by our assumption of the lemma for n− 1 sets.
Next we consider the infinite union.

Since
∞⋃
i=1

Ei ⊃
n⋃

i=1

Ei, for any set A, A ∩
∞⋃
i=1

Ei ⊃ A ∩
n⋃

i=1

Ei, then

m∗(A ∩
∞⋃
i=1

Ei) ≥ m∗(A ∩
n⋃

i=1

Ei) =
n∑

i=1

m∗(A ∩ Ei) ,

which holds for any n, so

m∗(A ∩
∞⋃
i=1

Ei) ≥
∞∑
i=1

m∗(A ∩ Ei) .

On the other side, since

A ∩
n⋃

i=1

Ei =
n⋃

i=1

A ∩ Ei ,
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we know for all n,

m∗
(
A ∩

n⋃
i=1

Ei

)
= m∗

( n⋃
i=1

A ∩ Ei

)
=

n∑
i=1

m∗(A ∩ Ei) ≤
∞∑
i=1

m∗(A ∩ Ei) ,

for {Ei} are disjoint, {A ∩ Ei} are disjoint. Then

m∗
(
A ∩

∞⋃
i=1

Ei

)
≤

∞∑
i=1

m∗(A ∩ Ei) .

Thus

m∗
(
A ∩

[ ∞⋃
i=1

Ei

])
=

∞∑
i=1

m∗(A ∩ Ei) .
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