Answers to Exercise 5

;roof . {m* is translation invariant, it means that for any « € R, E C R,a + F =
{a + x|z € E}, then m*(a + E) = m*(E)}.

E Cc Rym*(E) = inf { > U(I,)] I, is open intervals such that £ C U[n} Let’s denote
I =a+1, = {a+ x|xn€ I}, for any intervals {I,},, s.t. E c UZ,. Then it is
obvious that a + E C |JI/. Further, for any n, I[(I!) = sup{|z’ — y7’1|7$’,y’ eI} =

sup{|(a + z) — (a + y)|,x,y € L,} = sup{|z — y|,z,y € I,} = I(I,), so m*(a + E) =
inf { ST E ¢ UJ;} — inf { S UL E © Uln} = m*(B).

II'TL n n n

Proof . {f,} — f means that sup{|f.(z)— f(z)| |z € M} — 0. Put in another way,
for any € > 0, there exists a N; € N, when n > Ny, |f.(xz) — f(x)| <e, for all x € M. The
same to g,, for convenience, we may choose the same ¢ as above, then there also exists a
Ny € N, when n > Ny, |gn(x) —g(x)| < e, for all x € M. Since the space C' (M) is complete,
feC(M),and g € C(M), then f+ g € C(M), we will show that {f, +g.} — f+gin
C(M). For any £ > 0, denote N = max{Ny, No}, when n > N,

|(fa(@) + gu(2)) = (f(2) + 9(@))| = |(falz) = f(2)) + (gu(2) = g(2))|
< fa(@) = f(@)[ + gn(2) — ()] < 2,
which equals to say that sup{|(f.(z) + ga(z)) — (f(z) + g9(2))| |z € M} — 0. So
{fn+ gn} — f + g uniformly.

Next we will show that {f,,} is uniformly bounded on M, when n large enough. Let
e =1, then there exists N’ € N, when n > N’ sup |f,(x) — f(z)| < 1, so
xeM

sup [f(x)] = jgﬂl}ﬂf(x)—fo(l“)Jrfo(x)l}

zeM

< ESJ‘I}{VN’(I) — f@)] + [ fn(2)]}
< Sgﬂl}{!fwf(x)—f(x)|}+§g]8{|fzw(x)l}
< 1+K=D

(Note: it is easy to show that sup(4A + B) < sup A + sup B), for some finite constant

K = sup |fy(x)],x € M. Tt is the same to g, that is there also exists Ds, s.t. |g(x)| < Do
xeM

for all z € M.
Now for n > N,

sup |fu(z)] = sup |fu(z) — f(z) + f(2)]
< sup | fu(z) = f(z)] + sup [ f(z)]

xeM xeM

< 1414+ K=2+K=0C,.



It is the same to {g,}. There also exists some constant, and N”, s.t. when n > N”|
sup |gn(x)| < Cs.
zeM

Since {f,}, and {g,} are convergent uniformly on M, for any € > 0, there exists nq, ns,

when n,m > n* = max{ny,na}, | fu(x) — f(x)| < € and |gn(x) — gm(x)| < €, for all z € M.
Then for N* = max{N’, N” ny,ny}, when n,m > N* for all x € M,

’fngn_fmgm’ = |(fngn_fngm)“‘(fngm_fmgm)‘
< falgn = 9|+ 1gm(fr = fu)|l = [fallgn — gl + gl fo — fnl
S Cl'€+02'€.

thus {f.g,} converges uniformly on M.

Actually, since C'(M) is complete, there must exist a function H € C(M), s.t. {fogn} —
H uniformly, we show that H = fg. Because for all x € M, and for all n > N# =
max{ Ny, Ny, N'},

< Cl‘€+D2'€,

which means { f,g,} — fg uniformly, and from the uniqueness of limit, we know H = fg.
I11.
Proof . Apply the definition of uniform convergence directly.

sup {|f(z) — 0] |z € [0,00] } §sup{%‘x€ [O,oo[}:%—>0.

IV.
Proof . From theorem 2.3,

m*(AU B) <m*(A) + m*(B) = m*(A).
On the other side, A C AU B, from the definition of outer measure,
m*(A) <m*(AUB).

So m*(AU B) = m*(A), if m*(B) = 0.
V.
Proof . We know that

E\U B, = (B\E) | J(E N Eo) | J(E2\Ey),
since the three parts on the left are disjoint, we have
m(Er U E) =m(E)\Ey) +m(Ey N Ey) +m(EX\Ey) .
Then
m(E UE) +m(By 0V By) = |[m(B\By) +m(By 01 By)| + [m(Ex\Ey) +m(Ey 1 By)
= m(Ey) +m(Ey).



VI.
Proof . First we proof

m*<Am [QED :im*(AﬂEi)

We prove the lemma by induction on n. It is clearly true for n = 1, and we assume it is
true if we have n — 1 sets E;. Since the E; are disjoint sets, we have

AN [OE} NE,=ANE,

i=1
and

an[Us]ne; = an[Us]

Hence the measurability of E, implies

m*(m[i:(jl@]) — w(an[UB]nE)+m(an[JE]nE;)

i=1 i=1

— wans)+ar(an[UE])

= m(ANE,) + Y m'(ANE)

i=1

by our assumption of the lemma for n — 1 sets.
Next we cons1der the infinite union.

Since UE D UEZ, for any set A, AN UE DAN UEZ, then

i=1 i=1 i=1 i=1
AmUE ) > m*( AmUE Zn:m*(AﬂE,-),
i=1 '
which holds for any n, so
m* (AN G E;) > im*(A NE;).
i=1 i=1
On the other side, since

=1

i=1



we know for all n,
m*(Aﬂ OE1> = m*(LnJAﬂEZ) = zn:m*(AﬂEi) < im*(AﬂEi),

i=1 i=1 i=1 i=1

for {E;} are disjoint, {A N E;} are disjoint. Then
m*(Am GE) < im*(A NE).

i=1 i=1

Thus

w(an [UB]) =S man s,



