Answers to Exercise 6

I.

Proof. Suppose $f : E \longrightarrow \mathbb{R}$. Since f is measurable function, according to the definition, for any $r \in \mathbb{R}$, $\{x \in E | f(x) \geq r\}$ and $\{x \in E | f(x) \leq r\}$, are all measurable sets. Thus, from theorem 2.12, we know that $f^{-1}{r}$ is measurable, for $f^{-1}({r}) = {x \in \mathbb{R}^n}$ $E| f(x) \geq r$ \cap $\{x \in E | f(x) \leq r\}.$

Let $I \subset \mathbb{R}$ be any interval, we may as well suppose $I = (a, b), a, b \in R$, then $f^{-1}(\{a \leq b\})$ $f(x) < b$ } = { $x \in E | f(x) > a$ } \cap { $x \in E | f(x) < b$ }. Again from the fact that f is measurable, we know that both $\{x \in E | f(x) > a\}$ and $\{x \in E | f(x) < b\}$ are measurable sets, so does $\{x \in E | f(x) > a\} \cap \{x \in E | f(x) < b\}.$

II.

Proof. We may as well suppose that $f \geq g \geq 0$. Let ϕ be a simple function, s.t. **Proof.** We may as well suppose that $f \geq g \geq 0$. Let ϕ be a simple function, s.t. $0 \leq \phi \leq g$, then $0 \leq \phi \leq f$, and $\int \phi dm \leq \int f dm$ (from the definition 2.24). Since ϕ is any simple function, which satisfies $\phi \leq g$,

$$
\int g dm = \sup \{ \int \phi dm | \phi \text{ simple and } \phi \le g \} \le \int f dm,
$$

holds for any function f and g. Because $f \ge g$, so $f^+ \ge g^+$ and $f^- \le g^-$. Further,

$$
\int f^+ dm - \int f^- dm
$$

is defined, since $\int f dm$ exists. And from the fact that $\int f dm < \infty$, we know $\int f^+ dm < \infty$, is defined, since $\int f dm$ exists. And from the fact that $\int f dm < \infty$, we kend thus $\int g^+ dm < \int f^+ dm < \infty$, Therefore $\int g dm$ is exist, and we can get

$$
\int g dm = \int g^+ dm - \int g^- dm \le \int f^+ dm - \int f^- dm = \int f dm.
$$

III.

Proof. Since f and g are measurable functions, according to the theorem 2.17, $f - g$ is measurable. Then

$$
\{x \in E \mid f(x) < g(x)\} = \{x \in E \mid (f - g)(x) < 0\}
$$

is measurable. Similarly,

$$
\{x \in E | f(x) \le g(x)\} = \{x \in E | (f - g)(x) \le 0\}
$$

is measurable. And from question 1, we can easily get

$$
\{x \in E | f(x) = g(x)\} = \{x \in E | (f - g)(x) = 0\} = f^{-1}(\{0\})
$$

is measurable.

IV.

Proof. Let $G = \max\{f_1, \dots, f_n\}$, and $H = \min\{f_1, \dots, f_n\}$. For any $r \in \mathbb{R}$,

$$
A_1 = \{x \in E | G(x) > r\} = \bigcup_{i=1}^n \{x \in E | f_i(x) > r\},\
$$

and

$$
A_2 = \{x \in E | H(x) > r\} = \bigcap_{i=1}^{n} \{x \in E | f_i(x) > r\}.
$$

Since each $f_i, i = 1, \dots, n$ is measurable function, $\{x \in E | f_i(x) > r\}$ is measurable, for any $r \in \mathbb{R}$. By theorem 2.12, we know that A_1 and A_2 are measurable, thus G and H are measurable functions.

V.

Proof. AT. If not, for the function $f : E \longrightarrow R$, we may as well suppose $f(x) > 0$ holds for $\forall x \in A \subset E$, and $m(A) > 0$.

$$
A = \bigcup_{i=1}^{\infty} \left\{ x \in A \Big| \frac{1}{i+1} \le f(x) < \frac{1}{i} \right\} \bigcup \{ x \in A | 1 \le f(x) \} = \bigcup_{i=1}^{\infty} A_i \bigcup A_{\infty} \, .
$$

Since for all sets $\{x \in A\}$ $\frac{1}{i+1} \leq f(x) < \frac{1}{i}$ i , $i \in \mathbb{N}$ and the set $\{x \in A | 1 \leq f(x)\}\$ are disjoint, we get

$$
m(A) = \sum_{i=1}^{\infty} m(A_i) + m(A_{\infty}) > 0,
$$

Thus $m(A_i) > 0$ must hold for some $i \in \mathbb{N}$ or $i = \infty$. Then \int E $fdm \geq$ R A $fdm \geq$ R A_i $fdm \geq$ $\frac{1}{i+1}m(A_i) > 0$, a contradiction.