
Answers to Exercise 8

I.
Proof. f ∈ L∞,

b1 = ess sup |f(x)| = inf{b| |f(x)| ≤ b, a.e.} < ∞.

It means for any ε > 0, there exists a set E1 ∈ M, for any x ∈ E1, |f(x)| ≤ b1 + ε, and
m(R\E1) = 0.

Similarly, for g ∈ L∞,

b2 = ess sup |g(x)| = inf{b| |g(x)| ≤ b, a.e.} < ∞.

For the same ε, there also exists a set E2 ∈ M, s.t. for any x ∈ E2, |g(x)| ≤ b2 + ε, and
m(R\E2) = 0.

Then m(R\E1 ∩E2) = m(R\E1 ∪R\E2) ≤ m(R\E1) + m(R\E2) = 0, for x ∈ E1 ∩E2,

|f(x)g(x)| = |f(x)||g(x)| ≤ (b1 + ε)(b2 + ε) = b1b2 + (b1 + b1 + ε)ε

holds for any ε > 0, so

ess sup |f(x)g(x)| = inf{b| |f(x)g(x)| ≤ b, a.e.} ≤ b1b2 < ∞ ,

which means fg ∈ L∞.
II.
Proof. AT. {fn} is a Cauchy sequence in the metric dLp , 1 ≤ p < ∞, which means for

any ε > 0, there exists N ∈ N, for all n,m ≥ N ,

dLp(fn, fm) =

(∫
|fn − fm|pdm

) 1
p

< ε.

Suppose if {fn} is not a Cauchy sequence in the measure m, it means there exist ε0 > 0
and δ0 > 0, s.t. for any N ∈ N, there exist n,m ≥ N ,

m({x| |fn(x)− fm(x)| ≥ ε0}) ≥ δ0.

We denote
E = {x| |fn(x)− fm(x)| ≥ ε0},

then (∫
|fn − fm|pdm

) 1
p

≥
(∫

E

|fn − fm|pdm

) 1
p

≥ ε0

(∫

E

dm

) 1
p

≥ ε0δ
1
p

0 .

It is a contradiction. So {fn} is a Cauchy sequence in the measure m.
III.
Proof. f ∈ L1 means that ∫

|f(x)|dm < ∞.
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g ∈ L∞ means that

bg = ess sup |g(x)| = inf{b| |g(x)| ≤ b, a.e.} < ∞,

that is to say, for any ε > 0, there exists E ∈ M, s.t. for any x ∈ E, |g(x)| ≤ bg + ε, and
m(R\E) = 0. It is easy to see that |fg| is measurable, so from the exercise 7, No.1, we can
get

∫ |fg|dm =
∫

E
|fg|dm +

∫
R\E |fg|dm =

∫
E
|fg|dm

≤ (bg + ε)
∫

E
|f |dm ≤ (bg + ε)

∫ |f |dm = (bg + ε)dL1(f, 0),

which holds for any ε > 0, thus we finally obtain
∫
|fg|dm ≤ ess sup |g(x)| · dL1(f,0) = dL1(f, 0)dL∞(g, 0).

IV.
Proof. AT. Measurable functions {fn} converges to a measurable function f in the

measure m, means that, for each ε > 0, and each δ > 0, there exists N ∈ N,

m({x| |fn(x)− f(x)| ≥ ε}) < δ

holds for all n ≥ N .
Assume that {fn} is not a Cauchy sequence in the measure m, it means there exist

ε0 > 0 and δ0 > 0, s.t. for any N ∈ N, there exist n,m ≥ N ,

m({x| |fn(x)− fm(x)| ≥ ε0}) ≥ δ0.

We denote
E = {x| |fn(x)− fm(x)| ≥ ε0},

for any x ∈ E,

ε0 ≤ |fn(x)− fm(x)|
≤ |fn(x)− f(x)|+ |fm(x)− f(x)|
≤ 2 max{|fn(x)− f(x)|, |fm(x)− f(x)|}.

Denote E1(n,m) = {x ∈ E| |fn(x)− f(x)| ≥ |fm(x)− f(x)| }, and

E2(n,m) = E\E1(n,m) = {x ∈ E| |fm(x)− f(x)| > |fn(x)− f(x)| },
then

|fn(x)− f(x)| ≥ ε0

2
, for x ∈ E1(n,m)

and
|fm(x)− f(x)| ≥ ε0

2
, for x ∈ E2(n,m).

Since E = E1(n,m) ∪ E2(n,m), m(E) = m(E1(n,m)) + m(E2(n,m)) ≥ δ0. From this, we know
that for any δ > 0, m(E1(n,m)) < δ and m(E2(n,m)) < δ can’t hold simultaneously, which is

2



contradictory to the fact that {fn} converges to a measurable function f in the measure
m.

V.
Proof. Let p = ∞. {xn,k} ⊂ l∞ is a Cauchy sequence, then choose ε = 1, there exists

N ∈ N, for all m,n ≥ N ,

dl∞({xn,k}, {xm,k}) = sup
k
|xn,k − xm,k| ≤ 1.

For the N , since {xN,k}∞k=1 ∈ l∞, according to the definition of space l∞,

sup
k
|xN,k| = M < ∞.

For those n ≥ N ,

sup
k
|xn,k| = sup

k
|xn,k − xN,k + xN,k| ≤ sup

k
(|xn,k − xN,k|+ |xN,k|)

≤ sup
k
|xn,k − xN,k|+ sup

k
|xN,k| ≤ 1 + M.

And for those n < N , since {xn,k}∞k=1 ∈ l∞, we also know that

sup
k
|xn,k| = Mn < ∞, n = 1, 2, · · · , N − 1.

Denote C = max{M1,M2, · · · , MN−1,M}, then we can get

sup
k
|xn,k| ≤ C,

for all n ∈ N.
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