Answers to Exercise 8

I. Proof. $f \in L^{\infty}$,

 $b_1 = ess \sup |f(x)| = \inf \{b | |f(x)| \leq b, a.e.\} < \infty.$

It means for any $\varepsilon > 0$, there exists a set $E_1 \in \mathcal{M}$, for any $x \in E_1$, $|f(x)| \leq b_1 + \varepsilon$, and $m(\mathbb{R}\backslash E_1)=0.$

Similarly, for $g \in L^{\infty}$,

$$
b_2 = ess \sup |g(x)| = \inf \{b | |g(x)| \le b, a.e.\} < \infty.
$$

For the same ε , there also exists a set $E_2 \in \mathcal{M}$, s.t. for any $x \in E_2$, $|g(x)| \leq b_2 + \varepsilon$, and $m(\mathbb{R}\backslash E_2)=0.$

Then $m(\mathbb{R}\backslash E_1 \cap E_2) = m(\mathbb{R}\backslash E_1 \cup \mathbb{R}\backslash E_2) \le m(\mathbb{R}\backslash E_1) + m(\mathbb{R}\backslash E_2) = 0$, for $x \in E_1 \cap E_2$,

$$
|f(x)g(x)| = |f(x)||g(x)| \le (b_1 + \varepsilon)(b_2 + \varepsilon) = b_1b_2 + (b_1 + b_1 + \varepsilon)\varepsilon
$$

holds for any $\varepsilon > 0$, so

$$
ess \sup |f(x)g(x)| = \inf \{b| |f(x)g(x)| \le b, a.e.\} \le b_1b_2 < \infty,
$$

which means $fg \in L^{\infty}$.

II.

Proof. AT. $\{f_n\}$ is a Cauchy sequence in the metric d_{L^p} , $1 \leq p < \infty$, which means for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$, for all $n, m \ge N$,

$$
d_{L^p}(f_n, f_m) = \left(\int |f_n - f_m|^p dm\right)^{\frac{1}{p}} < \varepsilon.
$$

Suppose if $\{f_n\}$ is not a Cauchy sequence in the measure m, it means there exist $\varepsilon_0 > 0$ and $\delta_0 > 0$, s.t. for any $N \in \mathbb{N}$, there exist $n, m \ge N$,

$$
m({x|\,|f_n(x)-f_m(x)|\geq \varepsilon_0})\geq \delta_0.
$$

We denote

$$
E = \{x \mid |f_n(x) - f_m(x)| \ge \varepsilon_0\},\
$$

then

$$
\left(\int |f_n - f_m|^p dm\right)^{\frac{1}{p}} \ge \left(\int_E |f_n - f_m|^p dm\right)^{\frac{1}{p}} \ge \varepsilon_0 \left(\int_E dm\right)^{\frac{1}{p}} \ge \varepsilon_0 \delta_0^{\frac{1}{p}}.
$$

It is a contradiction. So $\{f_n\}$ is a Cauchy sequence in the measure m. III.

Proof. $f \in L^1$ means that

$$
\int |f(x)| dm < \infty.
$$

 $g \in L^{\infty}$ means that

$$
b_g = ess \sup |g(x)| = \inf \{ b | |g(x)| \le b, a.e. \} < \infty,
$$

that is to say, for any $\varepsilon > 0$, there exists $E \in \mathcal{M}$, s.t. for any $x \in E$, $|g(x)| \leq b_g + \varepsilon$, and $m(\mathbb{R}\backslash E) = 0$. It is easy to see that $|fg|$ is measurable, so from the exercise 7, No.1, we can get

$$
\int |fg|dm = \int_E |fg|dm + \int_{\mathbb{R}\setminus E} |fg|dm = \int_E |fg|dm
$$

$$
\leq (b_g + \varepsilon) \int_E |f|dm \leq (b_g + \varepsilon) \int |f|dm = (b_g + \varepsilon) d_{L^1}(f, 0),
$$

which holds for any $\varepsilon > 0$, thus we finally obtain

$$
\int |fg| dm \le \operatorname{ess} \sup |g(x)| \cdot d_{L^1(f,0)} = d_{L^1}(f,0) d_{L^{\infty}}(g,0).
$$

IV.

Proof. AT. Measurable functions $\{f_n\}$ converges to a measurable function f in the measure m, means that, for each $\varepsilon > 0$, and each $\delta > 0$, there exists $N \in \mathbb{N}$,

$$
m({x|\left|f_n(x) - f(x)\right| \ge \varepsilon}) < \delta
$$

holds for all $n > N$.

Assume that $\{f_n\}$ is not a Cauchy sequence in the measure m, it means there exist $\varepsilon_0 > 0$ and $\delta_0 > 0$, s.t. for any $N \in \mathbb{N}$, there exist $n, m \ge N$,

$$
m({x||f_n(x) - f_m(x)| \ge \varepsilon_0}) \ge \delta_0.
$$

We denote

$$
E = \{x \mid |f_n(x) - f_m(x)| \ge \varepsilon_0\},\
$$

for any $x \in E$,

$$
\varepsilon_0 \leq |f_n(x) - f_m(x)|
$$

\n
$$
\leq |f_n(x) - f(x)| + |f_m(x) - f(x)|
$$

\n
$$
\leq 2 \max\{|f_n(x) - f(x)|, |f_m(x) - f(x)|\}.
$$

Denote $E_{1(n,m)} = \{x \in E | |f_n(x) - f(x)| \geq |f_m(x) - f(x)| \}$, and

$$
E_{2(n,m)} = E \backslash E_{1(n,m)} = \{ x \in E | |f_m(x) - f(x)| > |f_n(x) - f(x)| \},
$$

then

$$
|f_n(x) - f(x)| \ge \frac{\varepsilon_0}{2}, \text{ for } x \in E_{1(n,m)}
$$

and

$$
|f_m(x) - f(x)| \ge \frac{\varepsilon_0}{2}
$$
, for $x \in E_{2(n,m)}$.

Since $E = E_{1(n,m)} \cup E_{2(n,m)}$, $m(E) = m(E_{1(n,m)}) + m(E_{2(n,m)}) \ge \delta_0$. From this, we know that for any $\delta > 0$, $m(\dot{E}_{1(n,m)}) < \delta$ and $m(\dot{E}_{2(n,m)}) < \delta$ can't hold simultaneously, which is contradictory to the fact that $\{f_n\}$ converges to a measurable function f in the measure m . V.

Proof. Let $p = \infty$. $\{x_{n,k}\}\subset l^{\infty}$ is a Cauchy sequence, then choose $\varepsilon = 1$, there exists $N \in \mathbb{N}$, for all $m, n \geq N$,

$$
d_{l^{\infty}}(\{x_{n,k}\}, \{x_{m,k}\}) = \sup_{k} |x_{n,k} - x_{m,k}| \leq 1.
$$

For the N, since $\{x_{N,k}\}_{k=1}^{\infty} \in l^{\infty}$, according to the definition of space l^{∞} ,

$$
\sup_{k}|x_{N,k}| = M < \infty.
$$

For those $n\geq N,$

$$
\sup_{k} |x_{n,k}| = \sup_{k} |x_{n,k} - x_{N,k} + x_{N,k}| \leq \sup_{k} (|x_{n,k} - x_{N,k}| + |x_{N,k}|)
$$

$$
\leq \sup_{k} |x_{n,k} - x_{N,k}| + \sup_{k} |x_{N,k}| \leq 1 + M.
$$

And for those $n < N$, since $\{x_{n,k}\}_{k=1}^{\infty} \in l^{\infty}$, we also know that

$$
\sup_{k} |x_{n,k}| = M_n < \infty, \ \ n = 1, 2, \cdots, N - 1.
$$

Denote $C = \max\{M_1, M_2, \cdots, M_{N-1}, M\}$, then we can get

$$
\sup_{k} |x_{n,k}| \leq C,
$$

for all $n\in\mathbb{N}.$