Answers to Exercise 7

I.
Proof. Step 1. We consider simple function:

P(z) = Z ;X E; (z),

{E;}}_, are disjoint measurable sets, then

/¢dm = /(bXEdm = i a;m(E;NE) < iajm(E) =0,
. j=1 =1

now

oxe(®) = ajxmnn(@).
j=1
Step 2. f: R — [0, 00] is measurable function, then

/fdm = Sup{/gbdm‘qb simple and ¢ < f} = 0.

E E

Step 3. From step 2, for any function f: R — ]@, we can get
/fdm = /f+dm = /f_dm =0.
E E E

I1.

Proof. Denote Cy = inf{b,||f(x)| < by,a.e.}, and Cy = inf{bs||g(z)| < bs,a.e.}. For
any ¢ > 0, there exists By € M, s.t. |f(z)| < Cf +¢, for any z € Ey, m(R\E;) = 0, and
there also exists Ey € M, s.t. |g(z)| < Cy + ¢, for any = € Ey, m(R\E;) = 0.

Now by the A-inequality, for any = € E; [ Es,

af(2) + Bg(a)] < |allf(@)] + [Bllg(x)] = lal([f(2)] = ) + [8](9(x)] — &) + (|ele + [Ble)
< [alCs +18ICq + (Jal +[5])e,

and since m(R\(E; N E)) = m(R\E; UR\Ey) < m(R\E;) + m(R\E2) = 0, we take the
infimum on both sides of the above inequality:

inf{b] o (2) + Bg(x)| < b,ae.}
< lafinf{by | [f(2)] < by, a.e.} + [B]inf{bo| |g(2)| < ba, a.e.} + inf{(|af + [3])e}
= |a|inf{by| |f(z)| < by, a.e.} + |F]inf{ba||g(z)| < by, a.e.}

I11.
Proof. dp~ : L™ x L™ — R, for any two functions f, g, dp~(f,g) = esssup |f — g|;



L. dp~(f,g) = esssup|f —g| > 0;

2. dp=(f,g9) = esssup|f — g| = inf{b||f(z) — g(x)| < b,a.e.} =0 <= |f(z) —g(z)| =
0,a.e. <= f(z) = g(x),a.e;

3. dr=(f,g) = esssup|f — g| = inf{b[[f(z) — g(x)] < b,a.e.} = inf{b][g(x) — f(x)] <
b,a.e.} =esssuplg — f| = dr=(g, f);

4. by question No.2 proved above, let a = 1 and § = 1, for any other function h € L™,
dpee(f,9) = inf{b| | f — g| < b,a.e.} = inf{b][(f —h)+ (h—g)| < b,a.e.} <inf{bi[|f—
h| < by a.e.} +inf{by||h — g| < by, a.e.} = dp(f,h) + dp=(h,g).

Thus, dy~ is indeed a metric.

IV.

Proof. If ab = 0, it is trivial; if ab > 0, let’s consider function f(z) = logz, z > 0.
Since f'(z) = % is decreasing, we know that f(z) = logx is concave function. In fact,
suppose 0 < x < u < y, apply mean value theorem for differentiation to find r and s with
0<zxz<r<u<s<y,such that

f/<7”) _ f(u) — f(ZE) _ logu B logx7

u—x u—2

e fy) = S() _omy ]
, — flu ogy — logu
y—u y—u
Since f'(z) is decreasing, f'(r) > f'(s), this gives

log u — log S logy — logu

Y

U—T o Yy—u
whenever 0 < x < u < y. In particular, by letting u = (1 — t)z + ty, where 0 <t < 1,
logu — log x S logy — logu
tly—=) — (1-ty—=)

hence
(1 —t)(logu —logx) > t(logy — logu),
put it in another way,
logu =log((1 — t)z +ty) > (1 —t)logz + tlogy.
So, Va, b>0,and 0 < A < 1,
Aoga+ (1 — N)logh <log(Aa+ (1 — A)b),
which equals to
log a*b' ™ < log(Aa + (1 — A)b).
Since log x itself is increasing, a*b*=* < Xa + (1 — A)b.

V.

Proof. Suppose for a while 0 < M < 400, otherwise is trivial. If m(E) = +oo,
the inequality holds; if m(FE) < +oo, take ¢(x) = Mxp(x) a simple function, then
|fxe| < ¢. Further, [ ¢dm = Mm(E) < 400, by theorem 2.26 (c) and (b’), | [ fxgdm| <
J 1 fxeldm < [ gdm = Mm(E).



