
3 Classical and modern function spaces

The theories of function spaces are, in many cases, based on the measure and
integration theory. In Analysis 4 we shall mostly restrict ourselves to R, since
the measure space (R,M, m) is what we know best. We note that many of the
function spaces below (see e.g. Lp spaces) could be considered in a more general
setting than just in R.

The linearity of a given function space is often proved by the classical Hölder
and Minkowski inequalities. These inequalities have a great number of applica-
tions in various branches of analysis. Therefore, the first subsection is devoted
to state and prove these two inequalities.

The remaining part of this section is devoted to function spaces. We shall
begin from the classical Lp spaces and end up with Qp spaces partly developed
in the University of Joensuu.

Hölder and Minkowski inequalities

To prove the two classical inequalities, we need

Lemma 3.1 If a, b ≥ 0 and 0 < λ < 1, then

aλb1−λ ≤ λa + (1− λ)b

with equality only if a = b.

Hölder Inequality: Let 1 < p < ∞ and 1 < q < ∞ be such that 1
p + 1

q = 1.1

Suppose that f : R −→ R̂ and g : R −→ R̂ are measurable functions such that
|f |p and |g|q are integrable. Then |fg| is integrable and, for any measurable set
E, we have

∫

E

|fg| dm ≤
(∫

E

|f |p dm

)1/p (∫

E

|g|q dm

)1/q

. (3.1)

Minkowski Inequality: Let 1 ≤ p < ∞. Suppose that f : R −→ R̂ and
g : R −→ R̂ are measurable functions such that |f |p and |g|p are integrable.
Then |f + g|p is integrable and, for any measurable set E, we have

(∫

E

|f + g|p dm

)1/p

≤
(∫

E

|f |p dm

)1/p

+
(∫

E

|g|p dm

)1/p

. (3.2)

Lp spaces

Suppose that f : R −→ R̂ is a measurable function and there exists b > 0
such that f(x) ≤ b a.e. Then we can define the essential supremum (oleellinen
supremum) of f to be

ess sup f = inf{b | f(x) ≤ b a.e.}.
Further, f is said to be essentially bounded (oleellisesti rajoitettu) if there exists
b > 0 such that |f(x)| ≤ b a.e.

1Such numbers p and q are called conjucate indices (konjukaatti-indeksit).
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Definition 3.2 For 1 ≤ p < ∞, Lp(R) is the family of measurable functions
f : R −→ R̂ such that (∫

|f |p dm

)1/p

< ∞.

Further, L∞(R) is the family of measurable functions f : R −→ R̂ such that

ess sup |f | < ∞.

For shortness, we denote Lp = Lp(R) and L∞ = L∞(R).

Theorem 3.3 The family L1 is the family of all Lebesgue integrable functions.

Theorem 3.4 Let 1 ≤ p ≤ ∞.

(a) The space Lp is a linear vector space.

(b) Define dLp : Lp × Lp −→ R+,

dLp(f, g) =

{ (∫ |f − g|p dm
)1/p

, 1 ≤ p < ∞,
ess sup |f − g|, p = ∞.

Considering two functions f, g ∈ Lp to be equivalent if f(x) = g(x) a.e.,
then dLp becomes a metric, that is, (Lp, dLp) is a metric space.

The metric dLp in the above theorem is called a standard metric on Lp and,
unless otherwise stated, Lp will be assumed to have this metric. (Sometimes
dLp is called a pseudo metric in the literature.)

Theorem 3.5 The following two assertions hold:

(a) If f ∈ Lp and g ∈ Lq, where p, q > 1 and 1
p + 1

q = 1, then fg ∈ L1.

(b) If f ∈ Lp and g ∈ L∞, where 1 ≤ p ≤ ∞, then fg ∈ Lp.

The remaining part of this subsection aims to show the completeness of the
Lp spaces, that is, the Cauchy sequences in each Lp space converge. This result
is usually referred to as Riesz-Fischer Theorem. To this end, some auxiliary
results will be needed.

We have already defined pointwise and uniform convergence for a given se-
quence of functions. We still need convergence in the measure m (suppene-
minen mitan m suhteen) and convergence in the metric dLp (suppeneminen
dLp-metriikan suhteen).

Definition 3.6 A sequence {fn} of measurable functions is said to converge to
f in the measure m if, for each ε > 0 and each δ > 0 there exists an N ∈ N
such that

m({x | |fn(x)− f(x)| ≥ ε}) < δ

for all n ≥ N .

Lemma 3.7 If {fn} is a Cauchy sequence in the measure m, then there is a
subsequence of {fn} which is a Cauchy sequence a.e.

20



Definition 3.8 Given 1 ≤ p ≤ ∞, let {fn} be a sequence of functions in Lp

and let f ∈ Lp. We say that {fn} converges to f in the metric dLp , if

lim
n→∞

dLp(fn, f) = 0.

Lemma 3.9 If {fn} is a Cauchy sequence in the metric dLp , 1 ≤ p < ∞, then
{fn} is a Cauchy sequence in the measure m.

Finally we are ready for

Riesz-Fischer Theorem: Let 1 ≤ p ≤ ∞ and let {fn} be a Cauchy sequence
in the metric dLp . Then {fn} converges to some f ∈ Lp in the metric dLp .

Remark. Riesz-Fischer Theorem along with Theorem 3.4 say that each Lp space
is a complete metric space.

The following result shows us that Lp spaces defined in a set of finite measure
satisfy the nesting property.

Theorem 3.10 Let 1 ≤ p < q ≤ ∞ and let a, b ∈ R be such that a < b. Then
Lq[a, b] ⊂ Lp[a, b].

`p spaces

Recall from Section 1 that sequences can be understood as discrete functions.
Therefore, `p spaces in the following definition can be regarded as a discrete
version of Lp spaces.

Definition 3.11 For 1 ≤ p < ∞, `p(R) (resp. `p(C)) is the family of all se-
quences {xn} in R (resp. in C) such that

( ∞∑
n=1

|xn|p
)1/p

< ∞.

Further, `∞(R) (resp. `p(C)) is the family of all sequences {xn} in R (resp. in
C) such that

sup
n
|xn| < ∞.

For shortness, we denote `p = `p(R) and `∞ = `∞(R).

Remarks. (1) Recall that real sequences are countable and therefore measurable
by Corollary 2.10.

(2) Analogously to Lp spaces (see Theorem 3.3), we call a sequence {xn}
integrable if and only if {xn} ∈ `1. The integral of {xn} is simply the sum∑∞

n=1 xn. This fact is based on a concept of a counting measure below.

Definition 3.12 Let Mc be the family of all subsets of N and, for any A ⊂ N,
define mc(A) be the number of elements in A. Then the triple (N,Mc,mc) is a
measure space and mc is called a counting measure (lukumäärämitta).
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Theorem 3.13 If f is a sequence {xn} in R, that is, if f : N −→ R is such
that f(n) = xn, then ∫

f dmc =
∑

n

xn, (3.3)

provided the series in (3.3) exists. Here,
∫

f dmc =
∫
N f dmc.

Hölder and Minkowski inequalities hold in fact for any measure and not just
for the Lebesgue measure. Therefore, we apply the two inequalities in the case
of a counting measure and make use of Theorem 3.13 to get:

Hölder Inequality (for series): Let 1 < p < ∞ and 1 < q < ∞ be such that
1
p + 1

q = 1. Suppose that {an} ∈ `p and {bn} ∈ `q. Then {anbn} ∈ `1 and

∞∑
n=1

|anbn| ≤
( ∞∑

n=1

|an|p
)1/p ( ∞∑

n=1

|bn|q
)1/q

. (3.4)

Minkowski Inequality (for series): Let 1 ≤ p < ∞. Suppose that {an} ∈ `p

and {bn} ∈ `p. Then {an + bn} ∈ `p and
( ∞∑

n=1

|an + bn|p
)1/p

≤
( ∞∑

n=1

|an|p
)1/p

+

( ∞∑
n=1

|bn|p
)1/p

. (3.5)

Theorem 3.14 Let 1 ≤ p ≤ ∞.

(a) The space `p is a linear vector space.

(b) Define d`p : `p × `p −→ R+,

d`p({an}, {bn}) =
{

(
∑

n |an − bn|p)1/p
, 1 ≤ p < ∞,

supn |an − bn|, p = ∞.

Then d`p is a metric, that is, (`p, d`p) is a metric space.

We aim to prove the completeness of the `p spaces. To this end, we need to
know what is meant by a Cauchy sequence in `p. Denote

{xn,k} = {{x1,k}∞k=1, {x2,k}∞k=1, . . .},
where, for each n ∈ N, {xn,k}∞k=1 ∈ `p. Then {xn,k} is a Cauchy sequence in `p,
provided that for every ε > 0 there exists an N ∈ N such that

d`p({xn,k}, {xm,k}) < ε,

as n,m ≥ N .
We shall make use of

Lemma 3.15 Let 1 ≤ p ≤ ∞. If {xn,k} ⊂ `p is a Cauchy sequence, then there
exists a uniform constant C > 0 such that

( ∞∑

k=1

|xn,k|p
)1/p

≤ C (p < ∞) or sup
k∈N

|xn,k| ≤ C (p = ∞),

for all n ∈ N.
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As for the Lp spaces, we have

Theorem 3.16 For every 1 ≤ p ≤ ∞, every Cauchy sequence in `p converges
to a sequence in `p in the metric d`p .

Complex function spaces

In this subsection we introduce some complex function spaces. These spaces are
spaces of functions f analytic in the open unit disc D = {z ∈ C | |z| < 1}.

Roughly speaking, analytic functions f in D are those functions f : D −→ C
for which the complex derivative d

dz f = f ′ exists.
All the spaces mentioned below are really complete linear spaces (proofs will

be omitted).
To begin with, we mention an analytic correspondence to Lp spaces known

as the Hardy spaces Hp. Let 1 ≤ p < ∞. A function f analytic in D is said to
belong to Hp, if

sup
0≤r<1

(
1
2π

∫ 2π

0

|f(reiθ)|p dθ

)1/p

< ∞.

Further, f is said to belong to H∞, if

sup
z∈D

|f(z)| < ∞.

A function f analytic in D is said to belong to the Dirichlet space D, if∫ ∫

D

|f ′(z)|2 dm(z) < ∞, (3.6)

where z = reiθ and dm(z) = rdrdθ is the areal Lebesgue measure in D. The
integral in (3.6) is the area of the image of D under f counting multiplicities.
Therefore, for every function in the Diriclet space, the image area (counting
multiplicities) is bounded.

A function f analytic in D is said to belong to the Bloch space, if

sup
z∈D

(1− |z|2)|f ′(z)| < ∞.

The image area of any Bloch function do not contain arbitrary large schlicht discs
(Bloch-funktioiden kuvajoukot eivät sisällä mielivaltaisen suuria sileästi/yksi-
arvoisesti kuvautuvia kiekkoja).

Following R. Aulaskari, J. Xiao and R. Zhao (1995), we define the Qp spaces
as follows. Let 0 ≤ p < ∞. A function f analytic in D is said to belong to Qp,
if

sup
a∈D

∫ ∫

D

|f ′(z)|2g(z, a)p dm(z) < ∞,

where dm(z) = rdrdθ is the areal Lebesgue measure in D and

g(z, a) = log
∣∣∣∣
1− āz

z − a

∣∣∣∣
is the Green’s function in D with logarithmic singularity at a. We note that
Q0 = D, Q1 = BMOA and, for any p > 1, Qp = B. Further, the Qp spaces
satisfy the following strict nesting property: If 0 < p1 < p2 < 1, then

D ( Qp1 ( Qp2 ( BMOA ( B.
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