
5 Inner product spaces

The previous section introduced the concept of the norm of a vector as a gen-
eralization of the idea of the length of a vector in R3. However, the length of
a vector in R3 is not the only geometric concept which can be expressed alge-
braically. Namely, if x = (x1, x2, x3) ∈ R3 and y = (y1, y2, y3) ∈ R3 then the
angle between them, say θ, can be obtained by using the scalar product

< x, y >= x1y1 + x2y2 + x3y3 = ||x|| ||y|| cos θ,

where
||x|| =

√
x2

1 + x2
2 + x2

3 =
√

< x, x >

and
||y|| =

√
y2
1 + y2

2 + y2
3 =

√
< y, y >

are the lengths of x and y, respectively.
The scalar product in R3 is such a useful concept that we would like to

extend it to other spaces — this is essentially what will be done in the first
subsection. Some of the function spaces known so far appear to possess inner
products and hence being inner product spaces of functions.

Real and complex inner products

We will see that it is necessary to distinguish between real and complex spaces.

Definition 5.1 Let X be a real vector space. An inner product on X is a
function < ·, · >: X ×X −→ R such that for all x, y, z ∈ X and all α, β ∈ R,

(a) < x, x >≥ 0,

(b) < x, x >= 0 if and only if x = 0,

(c) < αx + βy, z >= α < x, z > +β < y, z >,

(d) < x, y >=< y, x >.

Example. The function < x, y >: Rn×Rn −→ R defined by < x, y >=
n∑

j=1

xjyj

is an inner product on Rn and is called the standard inner product on Rn.

Definition 5.2 Let X be a complex vector space. An inner product on X is a
function < ·, · >: X ×X −→ C such that for all x, y, z ∈ X and all α, β ∈ C,

(a) < x, x >∈ R and < x, x >≥ 0,

(b) < x, x >= 0 if and only if x = 0,

(c) < αx + βy, z >= α < x, z > +β < y, z >,

(d) < x, y >= < y, x >.

Example. The function < x, y >: Cn×Cn −→ C defined by < x, y >=
n∑

j=1

xj ȳj

is an inner product on Cn and is called the standard inner product on Cn.
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Some inner product spaces

Definition 5.3 A real or complex vector space X with an inner product < ·, · >
is called an inner product space.

In general, an inner product can be defined on any finite-dimensional vector
space, as seen in the following:

Example. Let X be a finite-dimensional vector space with linearly inde-
pendent basis {e1, . . . , en}. Let x, y ∈ X have the (unique) representations
x =

∑n
j=1 λjej and y =

∑n
j=1 µjej . The function < ·, · >: X ×X −→ F defined

by < x, y >=
n∑

j=1

λjµ̄j is an inner product on X.

Clearly, the inner product in the example above depends on the basis chosen
and so we only obtain a ”standard” inner product when there is some natural
”standard” basis for the space.

We next show that L2 and `2 are inner product spaces (standard examples).

Example. If f, g ∈ L2 then fg ∈ L1 and the function < ·, · >: L2 × L2 −→ R
defined by < f, g >=

∫
fg dm is an inner product on L2 called the standard

inner product on L2.

Example. If a = {an}, b = {bn} ∈ `2, then {anbn} ∈ `1 and the function
< ·, · >: `2 × `2 −→ R defined by < a, b >=

∑∞
n=1 anbn is an inner product on

`2 called the standard inner product on `2.

Remark. The two examples above naturally hold in a more general setting:

(1) If (X, Σ, µ) is any measure space and and f, g ∈ L2(X), then fḡ ∈ L1(X)
and the function < ·, · >: L2(X) × L2(X) −→ F defined by < f, g >=∫

X
fḡ dµ is an inner on L2(X).

(2) If a = {an}, b = {bn} ∈ `2(F ), then {anbn} ∈ `1(F ) and the function
< ·, · >: `2 × `2 −→ F defined by < a, b >=

∑∞
n=1 anb̄n is an inner

product on `2(F ).

Example. Let X and Y be inner product spaces with inner products < ·, · >1

and < ·, · >2, respectively, and let Z = X × Y . Then the function < ·, · >:
Z × Z −→ F defined by < (x, y), (u, v) >=< x, u >1 + < y, v >2 is an inner
product on Z.

Some elementary algebraic identities

We prove some elementary algebraic identities satisfied by inner products. Our
first result does not seem important, but we shall make use of it below.

Lemma 5.4 Let X be an inner product space, x, y, z ∈ X and α, β ∈ F. Then

(a) < 0, y >=< x, 0 >= 0,
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(b) < x, αy + βz >= ᾱ < x, y > +β̄ < x, z >,

(c) <αx + βy, αx + βy>=
|α|2 <x, x> +αβ̄ <x, y> +βᾱ <y, x> +|β|2 <y, y>.

In the introduction to this section we noted that if x ∈ R3 and < ·, · > is the
usual inner product in R3, then

√
< x, x > gives the usual Euclidean length, or

norm, of x. We next show that for a general inner product space X the same
expression defines a norm on X.

Lemma 5.5 Let X be an inner product space and let x, y ∈ X. Then

(a) | < x, y > |2 ≤< x, x >< y, y >,

(b) the function || · || : X −→ R defined by ||x|| = √
< x, x > is a norm on X.

The norm ||x|| =
√

< x, x > defined in Lemma 5.5 on the inner product
space X is said to be induced by the inner product < ·, · >. The lemma shows
that, by using the induced norm, every inner product space can be regarded as a
normed space. Therefore, whenever using a norm on an inner product space X,
it is customary to use the induced norm without specifically mentioning it each
time. With this convention the inequality in Lemma 5.5(a) can be rewritten as

| < x, y > | ≤ ||x|| ||y||. (5.1)

Inequality (5.1) is known as the Cauchy-Schwarz inequality.

Lemma 5.6 Let X be an inner product space with inner product < ·, · >. Then
for all u, v, x, y ∈ X,

(a) < u + v, x + y > − < u− v, x− y >= 2 < u, y > +2 < v, x >,

(b) for complex X,

4 < u, y > = < u + v, x + y > − < u− v, x− y >

+i < u + iv, x + iy > −i < u− iv, x− iy > .

Theorem 5.7 Let X be an inner product space with inner product < ·, · > and
induced norm || · ||. Then for all x, y ∈ X,

(a) the parallelogram rule:

||x + y||2 + ||x− y||2 = 2
(||x||2 + ||y||2) ,

(b) for real X, 4 < x, y >= ||x + y||2 − ||x− y||2,
(c) for complex X, the polarization identity:

4 < x, y >= ||x + y||2 − ||x− y||2 + i||x + iy||2 − i||x− iy||2.

Since every inner product space has an induced norm, a natural question is
whether every norm is induced by an inner product. The answer is no. One
way to show that a given norm on a vector space is not induced by an inner
product is to show that it does not satisfy the parallelogram rule.

Example. The standard norm on the space CR[0, 1] is not induced by an inner
product.
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Orthogonality

The main reason we introduced inner products was in the hope of extending the
concept of angles between vectors. From the Cauchy-Schwarz inequality (5.1)
for real inner product spaces, if x and y are non-zero vectors, then

−1 ≤ < x, y >

||x|| ||y|| ≤ 1,

and so the angle between x and y can be defined to be

θ = cos−1

(
< x, y >

||x|| ||y||
)

.

For complex inner product spaces the situation is more difficult since the inner
product < x, y > may be complex and it is not clear what a complex ”angle”
would mean. However, an important special case can be considered, namely
when < x, y >= 0:

Definition 5.8 Let X be an inner product space. The vectors x, y ∈ X are
said to be orthogonal if < x, y >= 0.

Example. Recall the orthogonality in R3: If x, y ∈ R3 \ {0} are such that

0 =< x, y >= x1y1 + x2y2 + x3y3 = ||x|| ||y|| cos θ,

then θ = π
2 or θ = −π

2 .

From the standard linear algebra we are familiar with the concept of or-
thonormal sets of vectors in finite dimensional real inner product spaces. This
concept can be extended to arbitrary inner product spaces.

Definition 5.9 Let X be an inner product space. The set {e1, . . . , en} ⊂ X
is said to be orthonormal if ||ek|| = 1 for 1 ≤ k ≤ n and < ej , ek >= 0 for all
1 ≤ j, k ≤ n.

Now the theories of orthonormal basis’, orthogonal subspaces etc. can be
developed similarly as in the standard linear algebra course.

Hilbert spaces

As completeness is an important property in normed spaces, this is also true for
inner product spaces. Complete inner product were called Banach spaces, and
complete inner product spaces are Hilbert spaces:

Definition 5.10 An inner product space which is complete with respect to the
metric associated with the norm induced by the inner product is called a Hilbert
space.

Theorem 5.11 The following inner product spaces are Hilbert spaces:

(a) L2 with the standard inner product,

(b) `2 with the standard inner product,

(c) all finite-dimensional inner product spaces.

There are, of course, many other Hilbert spaces than those mentioned in
Theorem 5.11.
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