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Background

This material of Complex Analysis 2 assumes that the reader is familiar with
basic facts of complex analysis. In particular, the reader should be able to un-
derstand (and work with) complex number including their polar representation,
and elementary complex functions such as the exponential function as well as ba-
sic trigonometric functions. Of course, the reader should also know the notion of
analytic functions as well as Cauchy–Riemann equations, Möbius transformations,
power series and complex integration. In particular, we shall also apply Cauchy
integral theorem, Cauchy integral formula, power series representation of analytic
function, Gauss mean value theorem, Cauchy inequalities, elementary uniqueness
theorem of analytic functions, maximum principle and the Schwarz lemma, when-
ever needed.

1. Singularities for analytic functions

Unless otherwise specified, we are considering analytic functions in domains in
question.

Definition. Given f , z = a is an isolated singularity of f , if there exists R > 0 such
that f is analytic in 0 < |z − a| < R. The point z = a is a removable singularity,
if there exists an analytic g : B(a,R)→ C such that g(z) = f(z) for all z such that
0 < |z − a| < R.

Theorem 1.2. A singularity at z = a is removable if and only if

lim
z→a

(z − a)f(z) = 0.

Proof. (1) As an analytic function, g is continuous, hence bounded around a. There-
fore,

lim
z→a
z 6=a

(z − a)f(z) = lim
z→a
z 6=a

(z − a)g(z) = 0

trivially.
(2) Let us define h : B(a,R)→ C by

h(z) :=
{

(z − a)f(z), z 6= a

0, z = a.
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Clearly, h is continuous. We first prove that h is analytic. By the Cauchy integral
theorem, ∫

γ

h(ζ) dζ = 0,

provided γ is a piecewise continuously differentiable closed path in B(a,R). This
implies the existence of H : B(a, r) → C such that H ′ = h. Clearly, H is analytic.
Therefore, H is infinitely differentiable, and so h = H ′ also is differentiable and
therefore analytic in B(a,R). This implies that h can be represented as

h(z) =
∞∑
j=0

aj(z − a)j .

Since h(a) = 0,

h(z) =
∞∑
j=1

aj(z − a)j = (z − a)
∞∑
j=0

aj+1(z − a)j .

As a convergent power series,
∑∞
j=0 aj+1(z − a)j =: g(z) determines an analytic

function in B(a,R). If z 6= a, then

(z − a)f(z) = h(z) = (z − a)g(z),

and so f(z) = g(z). �

Definition 1.3. An isolated singularity z = a is a pole, if limz→a |f(z)| = ∞. If
an isolated singularity is neither removable nor a pole, then it is called an essential
singularity.

Theorem 1.4. For a pole z = a of f , there exists m ∈ N and an analytic function
g : B(a,R)→ C such that

f(z) = (z − a)−mg(z)

for any 0 < |z − a| < R.

Proof. Since limz→a
1
|f(z)| = 0, we have

lim
z→a

(z − a)
1

f(z)
= 0.

By Theorem 1.2, z = a is a removable singularity for 1
f(z) . Therefore, there exists

an analytic h : B(a,R)→ C such that

h(z) =
1

f(z)
for all 0 < |z − a| < R.

By the power series representation,

h(z) =
∞∑
j=m

aj(z − a)j = (z − a)m
∞∑
j=0

am+j(z − a)j

= (z − a)mh1(z),
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where m ∈ N, h1 is analytic in B(a,R) and h1(a) 6= 0. Since

1
f(z)

= (z − a)mh1(z), 0 < |z − a| < R,

we get
(z − a)mf(z) =

(
h1(z)

)−1 (1.1)

Since 0 < |h1(a)| <∞, it follows that 1
h1(z) is bounded around z = a and so

lim
z→a

(z − a)
1

h1(z)
= 0.

Therefore, 1
h1

has a removable singularity at z = a and so there exists an analytic
g : B(a,R)→ C so that g(z) = 1

h1(z) for 0 < |z − a| < R. By (1.1),

f(z) = (z − a)−mg(z), 0 < |z − a| < R. �

Definition 1.5. Assume f has a pole at z = a. The smallest integer m ∈ N such
that (z − a)mf(z) has a removable singularity at z = a, is the multiplicity of the
pole.

Exercise 1.1. Consider the following functions around z = 0:

(1) f(z) = 1
z

(2) f(z) = sin z
z

(3) f(z) = cos z
z

(4) f(z) = 1
1−ez

(5) f(z) = e1/z

(6) f(z) = z sin 1
z .

Determine whether z = 0 is removable, a pole or an essential singularity. In case
of a pole, determine also the multiplicity.

Theorem 1.6. (Laurent series). A function f analytic in an annulus 0 ≤ R1 <
|z − a| < R2 ≤ ∞ admits a unique representation

f(z) =
∞∑

j=−∞
aj(z − a)j .

The series on the right hand side converges absolutely and uniformly in every annu-
lus r1 < |z−a| < r2 such that R1 < r1 <2< R2. The coefficients aj are determined
by

aj :=
1

2πi

∫
γr

f(ζ)
(ζ − a)j+1 dζ (∼)

where γr := { |z − a| = r }, R1 < r < R2.

Proof. Omitted, see

3



Theorem 1.7. Let z = a be an isolated singularity of f and

f(z) =
∞∑

j=−∞
aj(z − a)j

be its Laurent series expansion in 0 < |z − a| < R. Then
(1) z = a is removable if and only if aj = 0 for j ≤ −1,
(2) z = a is a pole of multiplicity m ∈ N if and only if a−m 6= 0 and aj = 0 for

j ≤ −(m+ 1),
(3) z = a is essential if and only if aj 6= 0 for infinitely many negative integers j.

Exercise 1.2. Prove Theorem 1.7.

Theorem 1.8. (Casorati–Weierstraß). If f has an essential singularity at z = a,
then for every δ > 0,

f
(
B(a, δ) \ {a}

)
= C.

Proof. We have to prove: Given c ∈ C and ε > 0, there exists for each δ > 0 a
point z 6= a such that |z − a| < δ and |f(z) − c| < ε. If this is not the case, then
there exists c ∈ C and ε > 0 such that |f(z)− c| ≥ ε for all z ∈ B(a, δ), z 6= a. But
then

lim
z→a
z 6=a

∣∣∣∣f(z)− c
z − a

∣∣∣∣ =∞.

This means that f(z)−c
z−a has a pole at z = a. Let m be the multiplicity. Then m ≥ 1

and

g(z) := (z − a)m
f(z)− c
z − a

has a removable singularity. Therefore

0 = lim
z→a

(z − a)g(z) = lim
z→a

(z − a)m
(
f(z)− c

)
.

Then
lim
z→a

(z − a)mf(z) = lim
z→a

[
(z − a)m

(
f(z)− c

)
+ c(z − a)m

]
= 0

and so
lim
z→a

(z − a)
(
f(z)(z − a)m−1) = 0.

Hence,
f(z)(z − a)m−1

has a removable singularity at z = a. By Definition 1.1, there exists an analytic
g : B(a, δ)→ C such that

f(z) =
g(z)

(z − a)m−1 , 0 < |z − a| < δ.

If m > 1, then limz→a |f(z)| =∞, hence f has a pole at z = a, and if m = 1, then
f(z) has a removable singularity at z = a. Both cases contradict the assumption
of an essential singularity at z = a. �
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