10. The Cartan Lemma

The Cartan lemma is a purely geometric result addressing the geometry of a finite point set in the complex plane, having a number of applications into the analysis of canonical products.

Lemma 9.1. Let z_1, \ldots, z_n be given points in \mathbb{C} and H > 0 be given. Then there exists closed disks $\Delta_1, \ldots, \Delta_m, m \leq n$, such that the sum of the radii of the disks $\Delta_1, \ldots, \Delta_m$ is $\leq 2H$ and that

$$|z - z_1||z - z_2| \dots |z - z_n| > (H/e)^n$$
,

whenever $z \notin \bigcup_{j=1}^{m} \Delta_j$.

Remark. The points z_i in the assertion above are not necessarily distinct.

Proof. (1) Suppose first that there exists a disk Δ of radius H such that $\{z_1, \ldots, z_n\} \subset H$. Let now Δ_1 denote the disk of radius 2H, with the same centre as Δ . Consider now any point $z \notin \Delta_1$. Then $|z - z_j| > H$ for each $z_j, j = 1, \ldots, n$. Therefore we obtain

$$|z - z_1||z - z_2| \cdots |z - z_m| > H^n > (H/e)^n$$

(2) We now define k_1 to be the greatest natural number which satisfies the following condition: There exists a closed disk Δ'_1 of radius k_1H/n such that at least k_1 points z_j are contained in this disk. Obviously, we must have $1 \leq k_1 < n$, the last inequality following as we don't have the case of the first part of the proof. Actually, Δ'_1 contains exactly k_1 points z_j . In fact, if not, then Δ'_1 contains at least $k_1 + 1$ points z_j . Then the disk of radius $(k_1 + 1)H/n$ with the same centre as Δ'_1 results in a contradiction to the definition of k_1 .

Renumbering now, if needed, we may assume that $z_1, \ldots, z_{k_1} \in \Delta'_1$ while z_{k_1+1} , $\ldots, z_n \notin \Delta'_1$. We now start repeating the process. So, let k_2 be the greatest natural number such that for a closed disk Δ'_2 of radius k_2H/n at least (actually, exactly) k_2 points of z_{k_1+1}, \ldots, z_n are contained in Δ'_2 . Then we have $k_2 \leq k_1$; in fact, otherwise we would have a contradiction to the choice of k_1 . We now repeat this process m times, $m \leq n$, so that all points z_1, \ldots, z_n are contained in $\bigcup_{j=1}^m \Delta'_j$. Clearly, the disk Δ'_j ha radius k_jH/n and $k_1 \geq k_2 \geq \cdots \geq k_n$. Since each Δ'_j contains exactly k_j points of z_1, \ldots, z_n , we must have $k_1 + k_2 + \cdots + k_m = n$. Therefore, the sum of their radii is

$$\frac{k_1}{n}H + \dots + \frac{k_m}{n}H = \frac{k_1 + \dots + k_m}{n}H = H.$$

Expand now the disks Δ'_j , j = 1, ..., n, concentrically to Δ_j of radius $2\frac{k_j}{n}H$. Hence, the sum of the radii of the disks Δ_j is = 2H.

Consider now an arbitrary point $z \notin \bigcup_{j=1}^{m} \Delta_j$. Keep z fixed in what follows. We may assume, by renumbering the points z_1, \ldots, z_n again, if needed, that

$$|z - z_1| \le |z - z_2| \le \dots \le |z - z_n|.$$

48

Assuming now that we have been able to prove that

$$|z - z_j| > \frac{j}{n}H, \qquad j = 1, \dots, n,$$
 (10.1)

we obtain

$$\prod_{j=1}^{n} |z - z_j| > \prod_{j=1}^{n} \frac{j}{n} H = \frac{n!}{n^n} H^n \ge e^{-n} H^n = (H/e)^n.$$

In fact, this is an immediate consequence of

$$e^n = \sum_{j=0}^{\infty} \frac{1}{j!} n^j \ge \frac{1}{n!} n^n.$$

It remains to prove (10.1). We proceed to a contradiction by assuming that there exists at least one j such that $|z - z_j| \leq \frac{j}{n}H$. Let now p be the greatest natural number such that $k_p \geq j$. Such a number p exists. In fact, by monotonicity of the distances $|z - z_j|$, the disk of radius $\frac{j}{n}H$, centred at z, contains at least the points z_1, \ldots, z_j , and so $k_1 \geq j$. Consider now the pairs of natural numbers (s, q) such that $s \leq j, q \leq p$.

We first proceed to prove that $z_s \notin \Delta'_q$. In fact, suppose for a while that we have $z_s \in \Delta'_q$ for some (s,q) such that $s \leq j$, $q \leq p$. By the definition of p, we have $k_q \geq j$. The radius of Δ'_q equals to $\frac{k_q}{n}H$ and Δ'_q contains k_q points of z_1, \ldots, z_n . Let ζ be the centre of Δ'_q . Then

$$|z - \zeta| \le |z - z_s| + |\zeta - z_s| \le |z - z_j| + |\zeta - z_s| \le \frac{j}{n}H + \frac{k_q}{n}H \le 2\frac{k_q}{n}H.$$

Therefore, we have $z \in \Delta_q$, contradicting to $z \notin \bigcup_{j=1}^m \Delta_j$.

Therefore, we have $z_s \notin \Delta'_q$ for all pairs (s,q) such that $s \leq j, q \leq p$. In particular, this means that

$$\{z_1,\ldots,z_j\} \subset (\mathbb{C}\setminus\Delta'_p)\cap\cdots\cap(\mathbb{C}\setminus\Delta'_1).$$

Since now

$$|z-z_1| \leq |z-z_2| \leq \cdots \leq |z-z_j| \leq \frac{j}{n}H,$$

the disk of radius $\frac{j}{n}H$, centred at z, contains the points z_1, \ldots, z_j . By the definition of k_{p+1} , which takes into account points of z_1, \ldots, z_n , which are outside of $\bigcup_{j=1}^p \Delta'_j$, this means that $k_{p+1} \ge j$, a contradiction to the definition of p as the greatest number such that $k_p \ge j$. Therefore, (10.1) holds and we are done.