
10. The Cartan lemma

The Cartan lemma is a purely geometric result addressing the geometry of a
finite point set in the complex plane, having a number of applications into the
analysis of canonical products.

Lemma 9.1. Let z1, . . . , zn be given points in C and H > 0 be given. Then there
exists closed disks ∆1, . . . ,∆m, m ≤ n, such that the sum of the radii of the disks
∆1, . . . ,∆m is ≤ 2H and that

|z − z1||z − z2| . . . |z − zn| > (H/e)n,

whenever z /∈
⋃m
j=1 ∆j .

Remark. The points zj in the assertion above are not necessarily distinct.

Proof. (1) Suppose first that there exists a disk ∆ of radius H such that {z1, . . . , zn}
⊂ H. Let now ∆1 denote the disk of radius 2H, with the same centre as ∆. Consider
now any point z /∈ ∆1. Then |z − zj | > H for each zj , j = 1, . . . , n. Therefore we
obtain

|z − z1||z − z2| · · · |z − zm| > Hn > (H/e)n.

(2) We now define k1 to be the greatest natural number which satisfies the
following condition: There exists a closed disk ∆′1 of radius k1H/n such that at
least k1 points zj are contained in this disk. Obviously, we must have 1 ≤ k1 < n,
the last inequality following as we don’t have the case of the first part of the proof.
Actually, ∆′1 contains exactly k1 points zj . In fact, if not, then ∆′1 contains at least
k1 + 1 points zj . Then the disk of radius (k1 + 1)H/n with the same centre as ∆′1
results in a contradiction to the definition of k1.

Renumbering now, if needed, we may assume that z1, . . . , zk1 ∈ ∆′1 while zk1+1,
. . . , zn /∈ ∆′1. We now start repeating the process. So, let k2 be the greatest
natural number such that for a closed disk ∆′2 of radius k2H/n at least (actually,
exactly) k2 points of zk1+1, . . . , zn are contained in ∆′2. Then we have k2 ≤ k1; in
fact, otherwise we would have a contradiction to the choice of k1. We now repeat
this process m times, m ≤ n, so that all points z1, . . . , zn are contained in

⋃m
j=1 ∆′j .

Clearly, the disk ∆′j ha radius kjH/n and k1 ≥ k2 ≥ · · · ≥ kn. Since each ∆′j
contains exactly kj points of z1, . . . , zn, we must have k1 + k2 + · · · + km = n.
Therefore, the sum of their radii is

k1

n
H + · · ·+ km

n
H =

k1 + · · ·+ km
n

H = H.

Expand now the disks ∆′j , j = 1, . . . , n, concentrically to ∆j of radius 2kjn H. Hence,
the sum of the radii of the disks ∆j is = 2H.

Consider now an arbitrary point z /∈
⋃m
j=1 ∆j . Keep z fixed in what follows. We

may assume, by renumbering the points z1, . . . , zn again, if needed, that

|z − z1| ≤ |z − z2| ≤ · · · ≤ |z − zn|.
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Assuming now that we have been able to prove that

|z − zj | >
j

n
H, j = 1, . . . , n, (10.1)

we obtain
n∏
j=1

|z − zj | >
n∏
j=1

j

n
H =

n!
nn
Hn ≥ e−nHn = (H/e)n.

In fact, this is an immediate consequence of

en =
∞∑
j=0

1
j!
nj ≥ 1

n!
nn.

It remains to prove (10.1). We proceed to a contradiction by assuming that there
exists at least one j such that |z − zj | ≤ j

nH. Let now p be the greatest natural
number such that kp ≥ j. Such a number p exists. In fact, by monotonicity of the
distances |z − zj |, the disk of radius j

nH, centred at z, contains at least the points
z1, . . . , zj , and so k1 ≥ j. Consider now the pairs of natural numbers (s, q) such
that s ≤ j, q ≤ p.

We first proceed to prove that zs /∈ ∆′q. In fact, suppose for a while that we
have zs ∈ ∆′q for some (s, q) such that s ≤ j, q ≤ p. By the definition of p, we have
kq ≥ j. The radius of ∆′q equals to kq

n H and ∆′q contains kq points of z1, . . . , zn.
Let ζ be the centre of ∆′q. Then

|z − ζ| ≤ |z − zs|+ |ζ − zs| ≤ |z − zj |+ |ζ − zs| ≤
j

n
H +

kq
n
H ≤ 2

kq
n
H.

Therefore, we have z ∈ ∆q, contradicting to z /∈
⋃m
j=1 ∆j .

Therefore, we have zs /∈ ∆′q for all pairs (s, q) such that s ≤ j, q ≤ p. In
particular, this means that

{z1, . . . , zj} ⊂ (C \∆′p) ∩ · · · ∩ (C \∆′1).

Since now
|z − z1| ≤ |z − z2| ≤ · · · ≤ |z − zj | ≤

j

n
H,

the disk of radius j
nH, centred at z, contains the points z1, . . . , zj . By the definition

of kp+1, which takes into account points of z1, . . . , zn, which are outside of
⋃p
j=1 ∆′j ,

this means that kp+1 ≥ j, a contradiction to the definition of p as the greatest
number such that kp ≥ j. Therefore, (10.1) holds and we are done.
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