11. The Hadamard Theorem

Recall first the definitions of the Weierstraß factors in Chapter 5:

$$\begin{cases} E_0(z) := 1 - z \\ E_\nu(z) := (1 - z)e^{Q_\nu(z)} = (1 - z)e^{z + \frac{1}{2}z^2 + \dots + \frac{1}{\nu}z^\nu}, \quad \nu \ge 1, \end{cases}$$

and the notion of the convergence in Chapter 9.

Let f(z) now be an entire function of finite order ρ , and let $(z_n)_{n \in \mathbb{N}}$ be the sequence of its non-zero zeros, arranged according to increasing moduli. Let λ be the convergence exponent of f(z) and define

$$\nu := \begin{cases} [\lambda] = & \text{the integer part of } \lambda, \text{ if } \lambda \text{ is non-integer} \\ \lambda - 1, & \text{if } \lambda \text{ is an integer and } \sum |z_j|^{-\lambda} \text{ converges} \\ \lambda & & \text{otherwise.} \end{cases}$$

By Definition 9.2, $\sum |z_j|^{-(\nu+1)}$ converges, and

$$Q(z) = \prod_{j=1}^{\infty} E_{\nu} \left(\frac{z}{z_j}\right)$$
(11.1)

is an entire function with zeros exactly at (z_n) . Therefore, $\lambda(Q) = \lambda$. By Theorem 9.9, $\lambda \leq \rho(Q)$.

The infinite product (11.1) is called the *canonical product determined by* (the non-zero zeros) of f(z). Adding a suitable power z^m as an extra factor to Q(z), we may take into account all zeros of f(z).

Theorem 11.1. For a canonical product, $\lambda(Q) = \lambda = \rho(Q)$.

Proof. It suffices to prove that $\rho(Q) \leq \lambda$. To this end, we have to find a suitable majorant of M(r, Q). Fix now z, |z| = r, and $\varepsilon > 0$. Obviously,

$$\log M(r, Q) = \log \max_{|z|=r} |Q(z)| = \max_{|z|=r} \log |Q(z)|.$$

Clearly,

$$\log |Q(z)| = \log \prod_{j=1}^{\infty} \left| E_{\nu} \left(\frac{z}{z_j} \right) \right| \le \sum_{|z/z_j| \ge 1/2} \log \left| E_{\nu} \left(\frac{z}{z_j} \right) \right| + \sum_{|z/z_j| < 1/2} \log \left| E_{\nu} \left(\frac{z}{z_j} \right) \right|$$

=: $S_1 + S_2$.

Observe that S_1 is a finite sum by the standard uniqueness theorem of analytic functions.

To estimate S_2 , where $|\frac{z}{z_j}| < 1/2$, recall the property (3) of Weierstraß products from Chapter 5. By this property,

$$\left| E_{\nu} \left(\frac{z}{z_j} \right) - 1 \right| \le \left| \frac{z}{z_j} \right|^{\nu+1},$$
50

hence

$$\left|E_{\nu}\left(\frac{z}{z_{j}}\right)\right| \leq 1 + \left|\frac{z}{z_{j}}\right|^{\nu+1}.$$

Therefore,

$$\sum_{|z/z_j|<1/2} \log \left| E_{\nu}\left(\frac{z}{z_j}\right) \right| \le \sum_{|z/z_j|<1/2} \log \left(1 + \left|\frac{z}{z_j}\right|^{\nu+1}\right) \le \sum_{|z/z_j|<1/2} \left|\frac{z}{z_j}\right|^{\nu+1}.$$
 (11.2)

We now have to analyze all cases in the definition of ν above. In the middle case, the sum (11.2) is majorized by

$$=\sum_{|z/z_j|<1/2}\left|\frac{z}{|z_j|}\right|^{\lambda}=|z|^{\lambda}\sum_{|z/z_j|<1/2}|z_j|^{-\lambda}=O(r^{\lambda+\varepsilon}),$$

since $\sum |z_j|^{-\lambda}$ converges. In the remaining two cases, $\nu + 1 > \lambda + \varepsilon$ for ε small enough and so

$$\left|\frac{z}{z_j}\right|^{\nu+1} = |z|^{\lambda+\varepsilon} \left|\frac{z}{z_j}\right|^{\nu+1-\lambda-\varepsilon} |z_j|^{-(\lambda+\varepsilon)} \le |z|^{\lambda+\varepsilon} |z_j|^{-(\lambda+\varepsilon)}.$$

Hence, the sum in (11.2) is now

$$\leq |z|^{\lambda+\varepsilon} \sum_{|z/z_j| < 1/2} |z_j|^{-(\lambda+\varepsilon)} = O(r^{\lambda+\varepsilon}),$$

since $\sum |z_j|^{-(\lambda+\varepsilon)}$ converges by the definition of the exponent of convergence. To estimate S_1 , we first consider the case $\nu = 0$; recall that S_1 is a finite sum. Then

$$S_{1} = \sum_{|z/z_{j}| \ge 1/2} \log \left| E_{0} \left(\frac{z}{z_{j}} \right) \right| = \sum_{|z/z_{j}| \ge 1/2} \log \left| 1 - \frac{z}{z_{j}} \right|$$
$$\leq \sum_{|z/z_{j}| \ge 1/2} \log \left(1 + \left| \frac{z}{z_{j}} \right| \right) \le A \sum_{|z/z_{j}| \ge 1/2} \left| \frac{z}{z_{j}} \right|^{\varepsilon} = A|z|^{\varepsilon} \sum_{|z/z_{j}| \ge 1/2} |z_{j}|^{-\varepsilon}, \tag{11.3}$$

where A is a suitable constant. If $\lambda = 0$, then $\sum |z_j|^{-\varepsilon}$ converges and by (11.3),

$$S_1 = O(r^{\varepsilon}) = O(r^{\lambda} + \varepsilon).$$

If $\lambda = 1$ and $\sum |z_j|^{-1}$ converges, we get

$$S_{1} = A \sum \left| \frac{z}{z_{j}} \right|^{\varepsilon} = A|z| \sum \left| \frac{z}{z_{j}} \right|^{\varepsilon-1} |z_{j}|^{-1} = A|z| \sum \left| \frac{z_{j}}{z} \right|^{1-\varepsilon} |z_{j}|^{-1}$$
$$\leq 2A|z| \sum |z_{j}|^{-1} = O(r^{\lambda}) = O(r^{\lambda+\varepsilon}),$$

provided $\varepsilon < 1$. Since $\nu = 0$, we must have $\lambda \leq 1$. Thus, assume now $\lambda \in (0, 1)$ and take $\varepsilon < \lambda$. Then

$$S_{1} = A \sum \left| \frac{z}{z_{j}} \right|^{\varepsilon} = A|z|^{\lambda+\varepsilon} \sum \left| \frac{z}{z_{j}} \right|^{-\lambda} |z_{j}|^{-(\lambda+\varepsilon)} \le A|z|^{\lambda+\varepsilon} \sum \left| \frac{z_{j}}{z} \right|^{\lambda} |z_{j}|^{-(\lambda+\varepsilon)} \\ \le 2A|z|^{\lambda+\varepsilon} \sum |z_{j}|^{-(\lambda+\varepsilon)} = O(r^{\lambda+\varepsilon}).$$

Finally, we have to consider the case $\nu > 0$. Then, for each term in S_1 ,

$$\log \left| E_{\nu} \left(\frac{z}{z_{j}} \right) \right| \leq \log \left| 1 - \frac{z}{z_{j}} \right| + \left| \frac{z}{z_{j}} \right| + \dots + \frac{1}{\nu} \left| \frac{z}{z_{j}} \right|^{\nu}$$
$$\leq 2 \left(\left| \frac{z}{z_{j}} \right| + \dots + \frac{1}{\nu} \left| \frac{z}{z_{j}} \right|^{\nu} \right) \leq 2 \left| \frac{z}{z_{j}} \right|^{\nu} \left(1 + \left| \frac{z_{j}}{z} \right| + \dots + \left| \frac{z_{j}}{z} \right|^{\nu-1} \right)$$
$$\leq 2 \left| \frac{z}{z_{j}} \right|^{\nu} (1 + 2 + \dots + 2^{\nu-1}) \leq 2^{\nu+1} \left| \frac{z}{z_{j}} \right|^{\nu}.$$

If now $\nu = \lambda - 1$, then

$$\log\left|E_{\nu}\left(\frac{z}{z_{j}}\right)\right| \leq 2^{\nu+1}\left|\frac{z}{z_{j}}\right|^{\lambda-1} = 2^{\nu+1}\left|\frac{z}{z_{j}}\right|^{\lambda}\left|\frac{z_{j}}{z}\right| \leq 2^{\nu+2}\left|\frac{z}{z_{j}}\right|^{\lambda}.$$
(11.4)

If $\nu \neq \lambda - 1$, and ε is small enough, then $\nu < \lambda + \varepsilon \leq \nu + 1$ and $\lambda + \varepsilon + 1 \leq \nu + 2$. Therefore,

$$\log \left| E_{\nu} \left(\frac{z}{z_{j}} \right) \right| \leq 2^{\nu+1} \left| \frac{z}{z_{j}} \right|^{\nu} = 2^{\nu+1} \left| \frac{z}{z_{j}} \right|^{\lambda+\varepsilon} \left| \frac{z_{j}}{z} \right|^{\lambda+\varepsilon-\nu}$$
$$\leq 2^{\nu+1+\lambda+\varepsilon-\nu} \left| \frac{z}{z_{j}} \right|^{\lambda+\varepsilon} \leq 2^{\nu+2} \left| \frac{z}{z_{j}} \right|^{\lambda+\varepsilon}.$$
(11.5)

From (11.4) and (11.5),

$$\sum_{|z/z_j| \ge 1/2} \log \left| E_{\nu} \left(\frac{z}{z_j} \right) \right| \le 2^{\nu+2} r^{\lambda+\varepsilon} \sum_{|z/z_j| \ge 1/2} |z_j|^{-(\lambda+\varepsilon)}$$
$$\le 2^{\nu+2} r^{\lambda+\varepsilon} \sum_{z_j} |z_j|^{-(\lambda+\varepsilon)} = O(r^{\lambda+\varepsilon}).$$

So, we see that $S_1 = O(r^{\lambda + \varepsilon}), S_2 = O(r^{\lambda + \varepsilon})$. This means that

$$\log |Q(z)| = O(r^{\lambda + \varepsilon}),$$

hence

$$\log M(r,Q) = O(r^{\lambda+\varepsilon}),$$

and so

$$\rho(Q) = \limsup_{r \to \infty} \frac{\log \log M(r,Q)}{\log r} \leq \lambda + \varepsilon. \quad \Box$$

Theorem 11.2. (Hadamard). Let f(z) be a non-constant entire function of finite order ρ . Then

$$f(z) = z^m Q(z) e^{P(z)},$$

where (1) $m \ge 0$ is the multiplicity of the zero of f(z) at z = 0, (2) Q(z) is the canonical product formed with the non-zero zeros of f(z) and (3) P(z) is a polynomial of degree $\le \rho$.

Before we can prove the Hadamard theorem, we need the following

Lemma 11.3. Let Q(z) be a canonical product of order $\lambda = \lambda(Q)$. Given $\varepsilon > 0$, there exists a sequence $(r_n) \to +\infty$ such that for each r_n , the minimum modulus satisfies

$$\mu(r_n) := \min_{|z|=r_n} |Q(z)| > e^{-r_n^{\lambda+\varepsilon}}.$$
(11.4)

Proof. Let (z_j) denote the zeros of Q(z), $0 < |z_1| \le |z_2| \le \cdots$. Denote $r_j = |z_j|$. By the definition of the exponent of convergence, $\sum_j r_j^{-(\lambda+\varepsilon)}$ converges. This means that the length of the set

$$E := \bigcup_{j=1}^{\infty} \left[r_j - \frac{1}{r_j^{\lambda + \varepsilon}}, r_j + \frac{1}{r_j^{\lambda + \varepsilon}} \right]$$

is finite. We proceed to prove that (11.4) holds outside of E for all r sufficiently large. From the proof of Theorem 11.1,

$$\log |Q(z)| = S_1 + S_2' = \sum_{|z/z_j| \ge 1/2} \log \left| E_{\nu} \left(\frac{z}{z_j} \right) \right| + \log \prod_{|z/z_j| < 1/2} \left| E_{\nu} \left(\frac{z}{z_j} \right) \right|.$$

Moreover, from the same proof, making use of the estimate for S_2 , $S'_2 \leq S_2 = O(r^{\lambda+\varepsilon})$. Recall now again that S_1 is a finite sum. Therefore,

$$S_1 = \sum_{|z/z_j| \ge 1/2} \log \left| 1 - \frac{z}{z_j} \right| + \sum_{|z/z_j| \ge 1/2} \log |e^{Q_\nu(z)}| =: S_{11} + S_{12}.$$

Assume now that $r \notin E$ is sufficiently large. Then, as $2r \geq r_j$

$$\left|1 - \frac{z}{z_j}\right| = \frac{|z_j - z|}{|z_j|} \ge \frac{|r - r_j|}{r_j} \ge r_j^{-1 - \lambda - \varepsilon} \ge (2r)^{-1 - \lambda - \varepsilon}$$

and so

$$S_{11} = \sum_{|z/z_j| \ge 1/2} \log \left| 1 - \frac{z}{z_j} \right| \ge -(1 + \lambda + \varepsilon) \left(\log(2r) \right) n(2r).$$

By Theorem 9.8, $n(2r) = O(r^{\lambda+\varepsilon})$. Since $r^{\varepsilon} > (1 + \lambda + \varepsilon) \log 2r$ for r sufficiently large, we get

$$S_{11} \ge -r^{\lambda+3\varepsilon}.$$

For S_{12} , we may apply the proof of Theorem 11.1 to see that

$$S_{12} < S_1 = O(r^{\lambda + \varepsilon}).$$

Writing this as $S_{12} \leq Kr^{\lambda+\varepsilon}$ for r large enough, we get

$$\log |Q(z)| \ge -r^{\lambda+3\varepsilon} - K(r^{\lambda+\varepsilon}) = -r^{\lambda+3\varepsilon}(Kr^{-2\varepsilon}+1) \ge -2r^{\lambda+3\varepsilon} \ge -r^{\lambda+4\varepsilon}$$

By exponentiation, we get

$$|Q(z)| \ge e^{-r^{\lambda+4\varepsilon}},$$

hence (11.4) holds. \Box

Proof of Theorem 11.2. By the construction of the canonical product, $z^m Q(z)$ has exactly the same zeros as f(z), with the same multiplicities as well. Therefore,

$$f(z)/z^m Q(z)$$

is an entire function with no zeros. By Theorem 4.1, there is an entire function g(z) such that

$$f(z) = z^m Q(z) e^{g(z)}.$$

It remains to prove that g(z) is a polynomial of degree $\leq \rho$. Since f(z) is of order ρ ,

$$M(r,f) \le e^{r^{\rho+\epsilon}}$$

for all r sufficiently large. Now the order of $Q(z) = \lambda = \lambda(f) \leq \rho$. Take r such that (11.4) is true. Then

$$\max_{|z|=r} |e^{g(z)}| = \max_{|z|=r} e^{\operatorname{Re} g(z)} \le \frac{\max_{|z|=r} |f(z)|}{r^m \min_{|z|=r} |Q(z)|} \le \frac{e^{r^{\rho+\varepsilon}}}{e^{-r^{\lambda+\varepsilon}}} = e^{r^{\rho+\varepsilon}} \cdot e^{r^{\lambda+\varepsilon}} \le e^{2r^{\rho+\varepsilon}}.$$

Recalling Definition 7.4, we observe that

$$A(r,g) \le 2r^{\rho+\varepsilon}$$

By Theorem 7.6, g is a polynomial of degree $\leq \rho + \varepsilon$, hence $\leq \rho$. \Box

Corollary 11.4. Let f(z) be a nonconstant entire function of finite order ρ which is no natural number. Then $\lambda(f) = \rho$.

Proof. If $\rho = 0$, then by Theorem 11.2, deg P(z) = 0, hence P(z) is a constant. Therefore,

$$\rho = \rho(Q) = \lambda(Q) = \lambda(f).$$

Assume now that $\lambda(f) < \rho$. By Theorem 11.2, deg $P(z) \le \rho \notin \mathbb{N}$, hence deg $P(z) < \rho$. By Lemma 7.2,

$$M(r, e^P) \le e^{2|a_n|r^n}$$

here now $P(z) = a_n z^n + \cdots + a_0$. Therefore $\rho(e^P) \leq n$. On the other hand,

$$M(r, e^{P}) = \max_{|z|=r} |e^{P}| = e^{\max_{|z|=r} \operatorname{Re} P} = e^{A(r, P)} \ge e^{Kr}$$

for some K > 0 by Theorem 7.5. Hence $\rho(e^P) \ge n$, and so $\rho(e^P) = n < \rho$. By Theorem 7.9,

$$\rho(f) \le \max(\rho(z^m), \rho(Q), \rho(e^P)) \le \max(\lambda(f), n) < \rho = \rho(f),$$

a contradiction. $\hfill\square$

Corollary 11.5. If f(z) is transcendental entire and $\rho(f) \notin \mathbb{N}$, then f(z) has infinitely many zeros.

Proof. If $\rho > 0$, then $\lambda(f) > 0$, and so f must have infinitely many zeros. If then $\rho = 0$, the Hadamard theorem implies that $f(z) = cz^m Q(z), c \in \mathbb{C}, m \in \mathbb{N} \cup \{0\}$. Since f(z) is not a polynomial, Q(z) cannot be a polynomial and $\rho(Q) = 0$. By the construction of a canonical product, Q(z) is the product of terms of type $E_0(\frac{z}{z_j})$. Since it is not a polynomial, the number of zeros z_j must be infinite. \Box