11. THE HADAMARD THEOREM

Recall first the definitions of the Weierstrafl factors in Chapter 5:

{ E()(Z) =1—-2z
Ey(2) = (1—2)e@ () = (1 — z)eztaz++i2" > 1,
and the notion of the convergence in Chapter 9.

Let f(z) now be an entire function of finite order p, and let (z,)nen be the
sequence of its non-zero zeros, arranged according to increasing moduli. Let A be
the convergence exponent of f(z) and define

[A\] = the integer part of A, if A is non-integer
v:i=1< A—1, if Xisan integer and 3 |z;|~* converges
A otherwise.

By Definition 9.2, 3~ |z;|~®“*Y converges, and

Qz) = ]C;_O[lEV (i) (11.1)

is an entire function with zeros exactly at (z,). Therefore, A\(Q) = A. By Theo-
rem 9.9, A < p(Q).

The infinite product (11.1) is called the canonical product determined by (the
non-zero zeros) of f(z). Adding a suitable power z™ as an extra factor to Q(z), we
may take into account all zeros of f(z).

Theorem 11.1. For a canonical product, A\(Q) = X = p(Q).

Proof. 1t suffices to prove that p(Q) < A. To this end, we have to find a suitable
majorant of M (r,Q). Fix now z, |z| = r, and £ > 0. Obviously,

log M (r, Q) = log max 1Q(z)| = max log |Q(2)].

Clearly,

=)

Observe that S7 is a finite sum by the standard uniqueness theorem of analytic
functions.
To estimate S, where ]%\ < 1/2, recall the property (3) of Weierstrafl products

log|Q(z)| =log [ |
j=1

VA
El— | < 1
(Zj)‘ _| Z o8

z/z;|21/2

E, (i>‘ + Z log
“i |z/zj]1<1/2
= Sl + SQ.

from Chapter 5. By this property,

(2)-1
Zj
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hence

v+1
E, (3)‘ <142
Zj Zj
Therefore,
v+1 v+1
zZ zZ z
Z log‘E,, (z_>' < Z log (1 + = ) < Z = (11.2)
|2/2j]<1/2 J |z/2j]<1/2 J lz/z;1<1/2 "7

We now have to analyze all cases in the definition of v above. In the middle case,
the sum (11.2) is majorized by

P>

|2/25]<1/2

A

=z} Y Iyl =00,

|2/251<1/2

z

J

since Y |z;|~* converges. In the remaining two cases, v + 1 > X + ¢ for & small
enough and so

v+1
= |2

v+1—XA—e

z _ _
|Zj| (A+e) < |Z|>\+E|Zj| ()\‘FE)'

Zj

J

Hence, the sum in (11.2) is now

< |Z|)\—|—E Z |Zj|—(>\—|—5) _ O(T.)\—FE)’

|z/21<1/2

since 3 |z;|~(A*¢) converges by the definition of the exponent of convergence.

To estimate Si, we first consider the case v = 0; recall that S is a finite sum.
Then

S1 = Z log

() 5 e
|

|2/2121/2 % <)% 1>1)2 j

< > (i) <4 X P car X i
Zj ;

|z/2;1>1/2 J |z/z;1>1/2 "7 |2/ 2;|>1/2 (11.3)

where A is a suitable constant. If A =0, then > |z;|~° converges and by (11.3),
S1 =00 =00 +¢).

If A\=1and > |z;|~! converges, we get
€ e—1

Si= A || =AY | T =AY

<2412 ) |57 = 0(?) = 0,
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provided ¢ < 1. Since v = 0, we must have A < 1. Thus, assume now A € (0,1)
and take ¢ < A. Then
z

Si=4Y Zi = Al Y1
J

< 2A|Z|>\+s Z |Zj|f(/\+€) _ O(T/\+€).

€ - .
Zi

A A
—(\+ A+ —(A+
217D < ALY DI [~

Finally, we have to consider the case v > 0. Then, for each term in Sy,

v

1
log E,,(i)'glog‘l—i I I A
j Zj Zj V|zj
> 1 ZU ZV 2 Zjufl
<2(|—| 4+ —|— < 2|— 1+ |—=| 4.4+
Zj V|Z; Zj z P
<ol Zl (1424 2 <ot
Z] Zj
If now v = XA — 1, then
z 2 M 2| Mz 2
log‘Ey<—>‘§2”+1— =t =) |2 < o2l 2 (11.4)
Zj Zj Zj z Zj

If v # X —1, and ¢ is small enough, then v < A+e<v+land A\ +e+1<v+2.

Therefore,
v Ate Ate—v
log | E,, (3)’ <or+t|Z| vt Fl A
Zj Zj Zj z
5 Ate o Ate
S 2V+1+)\+57V - S 2V+2 - (11.5)
Zj <j

From (11.4) and (11.5),

z
1 Eu ~ < 21/—1—2 Ate J1—(A+e)
> e (Z)]sz 3 L

|2/21>1/2 |2/2;121/2

< 21/—1—27,)\—1—5 Z ‘Zj‘—()\—i—s) — O(T/\—'_E).

So, we see that S; = O(r*¢), Sy = O(r**¢). This means that

log |Q(2)| = O(r*%),

hence
log M (r,Q) = O(r**%),
and so
<A+e U

log log M
2(Q) = lim sup 12818 (r, Q)
00 logr
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Theorem 11.2. (Hadamard). Let f(z) be a non-constant entire function of finite
order p. Then

f(2) = 2"Q(2)e"®),
where (1) m > 0 is the multiplicity of the zero of f(z) at z = 0, (2) Q(z) is
the canonical product formed with the non-zero zeros of f(z) and (3) P(z) is a
polynomial of degree < p.

Before we can prove the Hadamard theorem, we need the following

Lemma 11.3. Let Q(z) be a canonical product of order A = A\(Q). Given € > 0,
there exists a sequence (r,) — 400 such that for each r,, the minimum modulus

satisfies
A+te

() = min Q)] > ¢ (11.4)
Proof. Let (z;) denote the zeros of Q(2), 0 < |z1| < |22| < ---. Denote r; = |z;|. By

A+te)

the definition of the exponent of convergence, > y rj_( converges. This means

that the length of the set
> 1 1
B=J [Tj —mﬂ“ﬁrm]
j=1 J J

is finite. We proceed to prove that (11.4) holds outside of E for all r sufficiently
large. From the proof of Theorem 11.1,
= (2]
g

z

1 =5, +5, = log |E, | — 1

0glQ(z) =S+ 5= ) Og’ <2j>‘+ og ]
|z/2;1>1/2 |z/2;1<1/2

Moreover, from the same proof, making use of the estimate for Sy, S, < Sy =

O(r**+¢). Recall now again that S; is a finite sum. Therefore,

S1 = Z log

|2/2;121/2

z
1—- =2
Zj

+ Z log [ )| =: §1; + S1a.
|2/2j121/2

Assume now that r ¢ E is sufficiently large. Then, as 2r > r;

_ |Z]|Z_|Z| > |T‘ ;‘Tj| > 7,j—1—z\—5 > (27”)_1_)\_8
J J

>

and so
_Z

. > —(1+ X +e¢)(log(2r))n(2r).

Sll == Z log

|2/2121/2

By Theorem 9.8, n(2r) = O(r**¢). Since ¢ > (1 + A + ¢€)log 2r for r sufficiently
large, we get
Siy > —rr e

For S5, we may apply the proof of Theorem 11.1 to see that

512 < Sl = O(T)\+E).
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Writing this as S5 < Kr**¢ for r large enough, we get
log ‘Q(Z)’ > —7")\+36 . K(T)\—H:) — —7’>\+3E(K7’_2E + 1) > _QTA+3E > —’I“A+4E.

By exponentiation, we get

hence (11.4) holds. O

Proof of Theorem 11.2. By the construction of the canonical product, 2""Q(z) has
exactly the same zeros as f(z), with the same multiplicities as well. Therefore,

f(2)/2"Q(2)

is an entire function with no zeros. By Theorem 4.1, there is an entire function g(z)
such that

f(z) = 2"Q(2)e).
It remains to prove that g(z) is a polynomial of degree < p. Since f(z) is of order p,

Tp+€

M(r.f) <e

for all r sufficiently large. Now the order of Q(z) = A = A(f) < p. Take r such that
(11.4) is true. Then

max|,|— z rete
max ’69(2)| = max eReg(z) < — ‘|z|—r |f( )’ < eir/\ﬁ_e _ e,rp+€ . er>\+s < €2Tp+[-:.
|z|=r |z|=r T ming | —, 1Q(2)] e

Recalling Definition 7.4, we observe that
A(r, g) < 2rPte.

By Theorem 7.6, g is a polynomial of degree < p + ¢, hence < p. [

Corollary 11.4. Let f(z) be a nonconstant entire function of finite order p which
is no natural number. Then A(f) = p.

Proof. If p = 0, then by Theorem 11.2, deg P(z) = 0, hence P(z) is a constant.
Therefore,

p=0(Q) = Q) = A(/).

Assume now that A(f) < p. By Theorem 11.2, deg P(z) < p ¢ N, hence deg P(z) <
p. By Lemma 7.2,
M(r,eP) < Hanls”,

here now P(z) = anz™ + - -+ + ag. Therefore p(e’’) < n. On the other hand,

M(r,e”) = max |e”| = em®¥izi=r Re P = oAnF) > Ko™
|z|="r -

for some K > 0 by Theorem 7.5. Hence p(ef’) > n, and so p(e’’) = n < p. By
Theorem 7.9,

p(f) < max(p(2™), p(Q), p(e”)) < max(A(f),n) < p = p(f),

a contradiction. O
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Corollary 11.5. If f(z) is transcendental entire and p(f) ¢ N, then f(z) has
infinitely many zeros.

Proof. If p > 0, then A(f) > 0, and so f must have infinitely many zeros. If then
p = 0, the Hadamard theorem implies that f(z) = cz™Q(z), c € C, m € NU{0}.
Since f(z) is not a polynomial, Q(z) cannot be a polynomial and p(Q) = 0. By the
construction of a canonical product, Q(z) is the product of terms of type Fy( %)

Since it is not a polynomial, the number of zeros z; must be infinite. [
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