
11. The Hadamard theorem

Recall first the definitions of the Weierstraß factors in Chapter 5:{
E0(z) := 1− z
Eν(z) := (1− z)eQν(z) = (1− z)ez+ 1

2 z
2+···+ 1

ν z
ν

, ν ≥ 1,

and the notion of the convergence in Chapter 9.
Let f(z) now be an entire function of finite order ρ, and let (zn)n∈N be the

sequence of its non-zero zeros, arranged according to increasing moduli. Let λ be
the convergence exponent of f(z) and define

ν :=


[λ] = the integer part of λ, if λ is non-integer
λ− 1, if λ is an integer and

∑
|zj |−λ converges

λ otherwise.

By Definition 9.2,
∑
|zj |−(ν+1) converges, and

Q(z) =
∞∏
j=1

Eν

(
z

zj

)
(11.1)

is an entire function with zeros exactly at (zn). Therefore, λ(Q) = λ. By Theo-
rem 9.9, λ ≤ ρ(Q).

The infinite product (11.1) is called the canonical product determined by (the
non-zero zeros) of f(z). Adding a suitable power zm as an extra factor to Q(z), we
may take into account all zeros of f(z).

Theorem 11.1. For a canonical product, λ(Q) = λ = ρ(Q).

Proof. It suffices to prove that ρ(Q) ≤ λ. To this end, we have to find a suitable
majorant of M(r,Q). Fix now z, |z| = r, and ε > 0. Obviously,

logM(r,Q) = log max
|z|=r

|Q(z)| = max
|z|=r

log |Q(z)|.

Clearly,

log |Q(z)| = log
∞∏
j=1

∣∣∣∣Eν( zzj
)∣∣∣∣ ≤ ∑

|z/zj |≥1/2

log
∣∣∣∣Eν( zzj

)∣∣∣∣+
∑

|z/zj |<1/2

log
∣∣∣∣Eν( zzj

)∣∣∣∣
=: S1 + S2.

Observe that S1 is a finite sum by the standard uniqueness theorem of analytic
functions.

To estimate S2, where | zzj | < 1/2, recall the property (3) of Weierstraß products
from Chapter 5. By this property,∣∣∣∣Eν( zzj

)
− 1
∣∣∣∣ ≤ ∣∣∣∣ zzj

∣∣∣∣ν+1

,
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hence ∣∣∣∣Eν( zzj
)∣∣∣∣ ≤ 1 +

∣∣∣∣ zzj
∣∣∣∣ν+1

.

Therefore,

∑
|z/zj |<1/2

log
∣∣∣∣Eν( zzj

)∣∣∣∣ ≤ ∑
|z/zj |<1/2

log

(
1 +

∣∣∣∣ zzj
∣∣∣∣ν+1

)
≤

∑
|z/zj |<1/2

∣∣∣∣ zzj
∣∣∣∣ν+1

. (11.2)

We now have to analyze all cases in the definition of ν above. In the middle case,
the sum (11.2) is majorized by

=
∑

|z/zj |<1/2

∣∣∣∣ zzj
∣∣∣∣λ = |z|λ

∑
|z/zj |<1/2

|zj |−λ = O(rλ+ε),

since
∑
|zj |−λ converges. In the remaining two cases, ν + 1 > λ + ε for ε small

enough and so∣∣∣∣ zzj
∣∣∣∣ν+1

= |z|λ+ε
∣∣∣∣ zzj
∣∣∣∣ν+1−λ−ε

|zj |−(λ+ε) ≤ |z|λ+ε|zj |−(λ+ε).

Hence, the sum in (11.2) is now

≤ |z|λ+ε
∑

|z/zj |<1/2

|zj |−(λ+ε) = O(rλ+ε),

since
∑
|zj |−(λ+ε) converges by the definition of the exponent of convergence.

To estimate S1, we first consider the case ν = 0; recall that S1 is a finite sum.
Then

S1 =
∑

|z/zj |≥1/2

log
∣∣∣∣E0

(
z

zj

)∣∣∣∣ =
∑

|z/zj |≥1/2

log
∣∣∣∣1− z

zj

∣∣∣∣
≤

∑
|z/zj |≥1/2

log
(

1 +
∣∣∣∣ zzj
∣∣∣∣) ≤ A ∑

|z/zj |≥1/2

∣∣∣∣ zzj
∣∣∣∣ε = A|z|ε

∑
|z/zj |≥1/2

|zj |−ε,
(11.3)

where A is a suitable constant. If λ = 0, then
∑
|zj |−ε converges and by (11.3),

S1 = O(rε) = O(rλ + ε).

If λ = 1 and
∑
|zj |−1 converges, we get

S1 = A
∑∣∣∣∣ zzj

∣∣∣∣ε = A|z|
∑∣∣∣∣ zzj

∣∣∣∣ε−1

|zj |−1 = A|z|
∑∣∣∣∣zjz

∣∣∣∣1−ε|zj |−1

≤ 2A|z|
∑
|zj |−1 = O(rλ) = O(rλ+ε),
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provided ε < 1. Since ν = 0, we must have λ ≤ 1. Thus, assume now λ ∈ (0, 1)
and take ε < λ. Then

S1 = A
∑∣∣∣∣ zzj

∣∣∣∣ε = A|z|λ+ε
∑∣∣∣∣ zzj

∣∣∣∣−λ|zj |−(λ+ε) ≤ A|z|λ+ε
∑∣∣∣∣zjz

∣∣∣∣λ|zj |−(λ+ε)

≤ 2A|z|λ+ε
∑
|zj |−(λ+ε) = O(rλ+ε).

Finally, we have to consider the case ν > 0. Then, for each term in S1,

log
∣∣∣∣Eν( zzj

)∣∣∣∣ ≤ log
∣∣∣∣1− z

zj

∣∣∣∣+
∣∣∣∣ zzj
∣∣∣∣+ · · ·+ 1

ν

∣∣∣∣ zzj
∣∣∣∣ν

≤ 2
(∣∣∣∣ zzj

∣∣∣∣+ · · ·+ 1
ν

∣∣∣∣ zzj
∣∣∣∣ν) ≤ 2

∣∣∣∣ zzj
∣∣∣∣ν
(

1 +
∣∣∣∣zjz
∣∣∣∣+ · · ·+

∣∣∣∣zjz
∣∣∣∣ν−1

)

≤ 2
∣∣∣∣ zzj
∣∣∣∣ν(1 + 2 + · · ·+ 2ν−1) ≤ 2ν+1

∣∣∣∣ zzj
∣∣∣∣ν .

If now ν = λ− 1, then

log
∣∣∣∣Eν( zzj

)∣∣∣∣ ≤ 2ν+1
∣∣∣∣ zzj
∣∣∣∣λ−1

= 2ν+1
∣∣∣∣ zzj
∣∣∣∣λ∣∣∣∣zjz

∣∣∣∣ ≤ 2ν+2
∣∣∣∣ zzj
∣∣∣∣λ. (11.4)

If ν 6= λ− 1, and ε is small enough, then ν < λ+ ε ≤ ν + 1 and λ+ ε+ 1 ≤ ν + 2.
Therefore,

log
∣∣∣∣Eν( zzj

)∣∣∣∣ ≤ 2ν+1
∣∣∣∣ zzj
∣∣∣∣ν = 2ν+1

∣∣∣∣ zzj
∣∣∣∣λ+ε∣∣∣∣zjz

∣∣∣∣λ+ε−ν

≤ 2ν+1+λ+ε−ν
∣∣∣∣ zzj
∣∣∣∣λ+ε

≤ 2ν+2
∣∣∣∣ zzj
∣∣∣∣λ+ε

. (11.5)

From (11.4) and (11.5),

∑
|z/zj |≥1/2

log
∣∣∣∣Eν( zzj

)∣∣∣∣ ≤ 2ν+2rλ+ε
∑

|z/zj |≥1/2

|zj |−(λ+ε)

≤ 2ν+2rλ+ε
∑
zj

|zj |−(λ+ε) = O(rλ+ε).

So, we see that S1 = O(rλ+ε), S2 = O(rλ+ε). This means that

log |Q(z)| = O(rλ+ε),

hence
logM(r,Q) = O(rλ+ε),

and so

ρ(Q) = lim sup
r→∞

log logM(r,Q)
log r

≤ λ+ ε. �
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Theorem 11.2. (Hadamard). Let f(z) be a non-constant entire function of finite
order ρ. Then

f(z) = zmQ(z)eP (z),

where (1) m ≥ 0 is the multiplicity of the zero of f(z) at z = 0, (2) Q(z) is
the canonical product formed with the non-zero zeros of f(z) and (3) P (z) is a
polynomial of degree ≤ ρ.

Before we can prove the Hadamard theorem, we need the following

Lemma 11.3. Let Q(z) be a canonical product of order λ = λ(Q). Given ε > 0,
there exists a sequence (rn) → +∞ such that for each rn, the minimum modulus
satisfies

µ(rn) := min
|z|=rn

|Q(z)| > e−r
λ+ε
n . (11.4)

Proof. Let (zj) denote the zeros of Q(z), 0 < |z1| ≤ |z2| ≤ · · · . Denote rj = |zj |. By
the definition of the exponent of convergence,

∑
j r
−(λ+ε)
j converges. This means

that the length of the set

E :=
∞⋃
j=1

[
rj −

1
rλ+ε
j

, rj +
1

rλ+ε
j

]

is finite. We proceed to prove that (11.4) holds outside of E for all r sufficiently
large. From the proof of Theorem 11.1,

log |Q(z)| = S1 + S′2 =
∑

|z/zj |≥1/2

log
∣∣∣∣Eν( zzj

)∣∣∣∣+ log
∏

|z/zj |<1/2

∣∣∣∣Eν( zzj
)∣∣∣∣ .

Moreover, from the same proof, making use of the estimate for S2, S′2 ≤ S2 =
O(rλ+ε). Recall now again that S1 is a finite sum. Therefore,

S1 =
∑

|z/zj |≥1/2

log
∣∣∣∣1− z

zj

∣∣∣∣+
∑

|z/zj |≥1/2

log |eQν(z)| =: S11 + S12.

Assume now that r /∈ E is sufficiently large. Then, as 2r ≥ rj∣∣∣∣1− z

zj

∣∣∣∣ =
|zj − z|
|zj |

≥ |r − rj |
rj

≥ r−1−λ−ε
j ≥ (2r)−1−λ−ε

and so

S11 =
∑

|z/zj |≥1/2

log
∣∣∣∣1− z

zj

∣∣∣∣ ≥ −(1 + λ+ ε)
(
log(2r)

)
n(2r).

By Theorem 9.8, n(2r) = O(rλ+ε). Since rε > (1 + λ + ε) log 2r for r sufficiently
large, we get

S11 ≥ −rλ+3ε.

For S12, we may apply the proof of Theorem 11.1 to see that

S12 < S1 = O(rλ+ε).
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Writing this as S12 ≤ Krλ+ε for r large enough, we get

log |Q(z)| ≥ −rλ+3ε −K(rλ+ε) = −rλ+3ε(Kr−2ε + 1) ≥ −2rλ+3ε ≥ −rλ+4ε.

By exponentiation, we get
|Q(z)| ≥ e−r

λ+4ε
,

hence (11.4) holds. �

Proof of Theorem 11.2. By the construction of the canonical product, zmQ(z) has
exactly the same zeros as f(z), with the same multiplicities as well. Therefore,

f(z)/zmQ(z)

is an entire function with no zeros. By Theorem 4.1, there is an entire function g(z)
such that

f(z) = zmQ(z)eg(z).

It remains to prove that g(z) is a polynomial of degree ≤ ρ. Since f(z) is of order ρ,

M(r, f) ≤ er
ρ+ε

for all r sufficiently large. Now the order of Q(z) = λ = λ(f) ≤ ρ. Take r such that
(11.4) is true. Then

max
|z|=r

|eg(z)| = max
|z|=r

eRe g(z) ≤
max|z|=r |f(z)|

rm min|z|=r |Q(z)|
≤ er

ρ+ε

e−rλ+ε = er
ρ+ε
· er

λ+ε
≤ e2rρ+ε .

Recalling Definition 7.4, we observe that

A(r, g) ≤ 2rρ+ε.

By Theorem 7.6, g is a polynomial of degree ≤ ρ+ ε, hence ≤ ρ. �

Corollary 11.4. Let f(z) be a nonconstant entire function of finite order ρ which
is no natural number. Then λ(f) = ρ.

Proof. If ρ = 0, then by Theorem 11.2, degP (z) = 0, hence P (z) is a constant.
Therefore,

ρ = ρ(Q) = λ(Q) = λ(f).

Assume now that λ(f) < ρ. By Theorem 11.2, degP (z) ≤ ρ /∈ N, hence degP (z) <
ρ. By Lemma 7.2,

M(r, eP ) ≤ e2|an|rn ;

here now P (z) = anz
n + · · ·+ a0. Therefore ρ(eP ) ≤ n. On the other hand,

M(r, eP ) = max
|z|=r

|eP | = emax|z|=r ReP = eA(r,P ) ≥ eKr
n

for some K > 0 by Theorem 7.5. Hence ρ(eP ) ≥ n, and so ρ(eP ) = n < ρ. By
Theorem 7.9,

ρ(f) ≤ max
(
ρ(zm), ρ(Q), ρ(eP )

)
≤ max

(
λ(f), n

)
< ρ = ρ(f),

a contradiction. �
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Corollary 11.5. If f(z) is transcendental entire and ρ(f) /∈ N, then f(z) has
infinitely many zeros.

Proof. If ρ > 0, then λ(f) > 0, and so f must have infinitely many zeros. If then
ρ = 0, the Hadamard theorem implies that f(z) = czmQ(z), c ∈ C, m ∈ N ∪ {0}.
Since f(z) is not a polynomial, Q(z) cannot be a polynomial and ρ(Q) = 0. By the
construction of a canonical product, Q(z) is the product of terms of type E0( zzj ).
Since it is not a polynomial, the number of zeros zj must be infinite. �
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