2. THE RESIDUE THEOREM

Let z = a be an isolated singularity of f and let

oo

)= Y aj(z—a)

j=—o00

be its Laurent expansion around z = a. Define now the residue of f at z = a by

Res(f,a) :==a_;.
Theorem 2.1. (Residue theorem). Assume that f: G — C is analytic in a conver
region G except for finitely many poles a1, ...,a, and let v be a piecewise continu-

ously differentiable closed path in G such that aj ¢ v(I), j=1,...,n. Then

2m/f )d¢ = Z n(vy,a;) Res(f,a;),

where n(7v,a;) denotes the winding number of v around z = a; counterclockwise.

Remark. 1) Intuitively, the winding number tells how many times one goes around
z = a; as one follows the path v from (0) to y(1). We omit the exact definition.

(2) The residue theorem holds good even in a number of more general situations.
We omit these considerations.

Proof of Theorem 2.1. Let

f(z) = Z ajr(z —ap)! = Si(z +Za3kz—ak
J==tk
be the Laurent expansions of f(z) around z = ay, k =1,...,n. Clearly, g(z2) =

f(z) =Y 1_, Sk(z) is analytic in G. By the Cauchy theorem,

o:Lg<<>d<=/f<c>d<—i/Sk Q) dc

/f )¢ — ZZ%,/ (€ - ax) dC.

k=1j=—pk
Therefore, it suffices to compute

L(c )™ dC

for 1 < k < n and for any m € N. This integral is independent of the path and so
we may assume 7y to be a circle centered at ai. Since (¢ — ar)~™ has a primitive
for m > 2, then fV(C —ay)"™=0form>2. If m=1, then
(€~ a) dc = 2minty. o)
gl
by the Cauchy integral formula. Therefore,

0= / f(¢)d¢ — Z a_1 - 2min(y, ar)
R k=1

:/f(g)dg—2mZn(v,aj)ReS(f,aj)~ O
vy k=1



Theorem 2.2. If f(z) has a pole of multiplicity m at z = a and g(z) = (z —
a)™f(z), then

1
e (m—l)
Res(fr0) = gy (@)
Proof. Clearly,
f(z) = Z a;(z — a)’
j=—m
and so
g(2)=a_m+a_miri(z—a)+ - Fa_i(z—a)" ..,
hence

g™ V)= (m-1Dla,. O
Corollary 2.3. If f(2) has a simple pole at z = a and g(z) := (z — a) f(z), then
Res(f,a) = g(a) = lim (= — ) f(2).

/+°° dx
oo 14 2?

1 1/ 1 1
f(z)_1+z2_i(z—z'+z+z‘)'

f(z) is analytic in C\ {4, —i}, with simple poles at z = +i. By Corollary 2.3,

Res(f,i) = lim(z — 1) f(2) !

Example 2.4. To compute

consider

Assume R > 1, and compute f7 f(€)d¢, where ~y is as in the figure. By the residue
theorem

/ %CCQ = 2mi Res(f, i) = m.
.,

/ d¢ _/R dz +/ dc¢
y 1+ Jgl+a? g, 1+

where Kp is the half-circle part of v. But ¢ = Re' on v and so d( = iRe'¥ d,
hence

dC /”iRei‘P /7r de R
—_— —dyp| <R < 0 R ,
/KR1+<2 0o 14¢ “)‘— o T+F " RE—1 ~  ®ET%

since |1+ (%[ > ||¢|* — 1| = R* — 1 on K. Therefore

) ¢ *  dx ) d¢
™= lim — = ——5 + lim —
R—o00 ,yl—f—C _Ool—f—:L‘ R—o00 KRl+C

On the other hand,

giving




Example 2.5. Prove that

/OO x2 dx o
o Lt 2

Now
2
z
is analytic in C\ {ai,...,a4}, where a,:s are the fourth roots of —1. Making use

of the same path v as in Example 2.4, we need a1, as only;

ap = —(1+1), as = —(1—1).

&\H
<[

Now,

22

Res(f, 1) = Jim (=~ a1)f(2) = Jim (= — 1) s S

a? 1=
(a1 — az)(a1 — as)(ar —as) 42

Similarly,

By the residue theorem,

omi / f(€) d¢ = Res(f,a1) + Res(f, az) = 2%

On the other hand,

1 1 P oaZdr 1 ¢ d¢
fAf(C)dC—Tm[R1+x4+Tm Kp L+ CH

Now,
CQ dc ™ R2e2i<p o ™ . €3i<p ng
1 ci— T hiidi - Rie'? dp = 2R3—4 i
Kgr + C 0 1 + R e 0 1 + R e

Since |1 + Rie®®| > R* — 1, we get

2 3 s 3
LS|t [ e wne

~RA-1 Rt —1
7 1 /Oo x2 dx /OO x2 dx T
—_ = — = —. D
22  2miJ_ 1+t o1ttt P

and so




Example 2.6. Compute

T
d
/—90 for a > 1.
0 @-+cosp
On the unit circle [2| =1, z =¢e? and so z=e" % = - = 1 and

2
2“4 2az +1 . »
FERH] (o) mat BT — kB o) =t cos

Let v be the unit circle. Observing that cos(—p) = cos p, we get

/ﬂd—gozl/%d—go:_i/L (2.1)
o at+cosp 2J, a+cosp 4 22420z + 1 ’

Now, 22 4+ 2az + 1 = (2 — a)(z — 3), where

a=—-a+vVa®—1, B=—a—+a?—1.

Since @ > 1, it is easy to see that |o| < 1, |f] > 1. Therefore, by the residue
theorem,

dz . - 1
/ym—ZMReS(f,a)—27mzh_1’)r(11(z—o<)(z_a)(z_ﬁ)

)

1
Oé—ﬁ:\/aQ—l'

Combining with (2.1), one obtains
T od
/ LA
o a-+cosp a2 —1

Example 2.7. To evaluate
/ > sinx
dx,
0 xr
we consider

iz —p iz iz R _ix iz
/e—dz:/ e—dx+/ e—dz+/ 6—d:c+/  d
v 2 -R T - < p T Yo %
R _: iz iz
:22'/ Slnxdm+/ e—dz+/ e—dz.
P x Y1 z Y2 z

The integral = 0, since (1) f(z) = €'*/z is analytic inside of v, (2) €** = cosz +
isinz, (3) cosx/x is an odd function and sinx/x is even.
To evaluate the integral over 7,2, we need the Jordan inequality

= 2m

/ e Bsne gy < TRy (R>0).
; R
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To this end, consider g(p) := sinp — @ cosp. Since g(0) = 0 and ¢'(p) = cosp —
cos p + @sing > 0, g(¢) > 0 for 0 < ¢ < 7/2. Therefore,

D(smcp):cpcoscp—smcpga 0<p<n/2

© 2

since (sin /@) p—r/2 = %, we have sinp/p > % for 0 < ¢ < 7/2. Then e~ Fsine <

_R2e
e B%  and so

- . w/2 ) ™/2 20 T
/ e—Rs1n<p dQO _ 2/ e—Rsm<p dg& < 2/ B_R.T dSO = }_%(1 _ €_R),
0 0 0

Therefore,

eiz
/ —dz
Y2 z

/TF eiR(COSSO-i‘iSin(p) ) Zd(}p‘ < /7‘— ‘eiRcosga‘e—RSint,D dQO
0 0
s ] T
:/ e e gy < —(1—e ) =0 as R — oo.
0 R
By the Taylor expansion of e,

12 1
67 = + g(2), g(z) analytic (in C).

So,
/ e—dz:/ —Z—I—/ 9(z) dz,
71 < 7 z 71
and now
d ™
/ @ _ z/ dp = mi,
o~ 0
/ g(z)dz SK/ |pe'?|dp = Knp — 0 as p — 0.
Y1 0
Therefore, '
/e—dz—>7ri as p — 0.
n
Hence,

R _: iz iz
ozzz‘/ Smxda:—/ 6—dz+/ € dz
p T yo# o #

0o
—>2i/ ST g — as R — oo and p — 0.
0 X

This results in




Example 2.8. Prove that

* gin? g
5 dr =
0 T

14 2iz — e2#
22 '

SE

Consider
f(z) =

The only possible pole is z = 0. Since the power series of e?** converges for all z

(€2# is entire!), ¢(z) below is bounded around z = 0:

1+2iz—e* 1 2 [\’ 1 2 (1 | 2
—2:—2+—— — :—2+—— ——I—Z—§Z+"‘
z z z z z z

Therefore, lim, ¢ zf(z) = lim,_,¢ 2¢(2) = 0, and so f(z) has a removable singu-
larity at z = 0. Since f(z) is analytic in C, by the Cauchy theorem,

Bl 4 2ix — %@
0= [ s@ic= [ oacr [

For the integral on 7, we get

R . 2ix R 2z R
1+ 2ix — 1-— d
/ + sz € dr = / 2 dx + 22'/ 4
—R xr -R X —R X

R R _: R
1-— 2 2 d
/ C(2)S il dx —i/ Sln2x diU—l—Qi/ ax
R X R X -R X

R sin? 2
=2 / 5— dr + a purely imaginary term
R X

sin? x
=4 / dx 4+ a purely imaginary term.
0

For the integral on /’;,

™1 %R io _ _2iRe'% )
ﬁﬂoa=/ T2REY — T iRei dy
vy 0

R2€2up
= [ gerde=2 [ Do [T e dp— 1ty
/oRe ¥ 090 ORee ® 1+ 12+ 13.

Now,

1 ™
|Il|§}_%/ d@z%ﬁo as R — oo,
0

IQ = 27
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and

13| =

1 ™ . 2 7T/2 .
< _/ 672Rsm<p ng — _/ 672R51n4p d(,O
R Jo
™

§—/ 4iwalgo—2R2(1—e’2R)—>0 as R — oo.

T -
7 . _ .
—e ZLPGQZRCOSLPG QRSH“‘Dng
o R

Therefore, by taking real parts,

oo i 2
/ sin xdx:lim(——/f d§>:—+hm([1+[3):g. 0
0

x2 R—o0
/OO dx
0 (ZL‘2 + 1)2’

1 1
M= " e
Clearly, f(z) has double poles in z = +i, and no other poles. Therefore, by Theo-
rem 2.2,

Example 2.9. To compute,

denote

Res(f,i) = :4'(i)

where g(z) = (z — )2 f(2) = m Hence,

o (2n) -

R,GS(f,i) =

and so

By the residue theorem,

ac . LT
AW—QW’LRGS(]{),Z)— 2

On the other hand,
/L _ /R _dr / ¢
L (E+1)2 0 J g (@212 Sk, (1)
TR

Jo @R
Ko @+ 17| 5 (B2 =17

. 1 . .
Since @ZT)Z 1S an even function,

/”d_x_;/”d_x_;hm /Rd_x_z
o (@2+1)2 2] (22412 2R=cc) p(22+1)2 4

11

— 0 as R — oo.




Exercises. Evaluate the following integrals by making use of the residue theorem
> xdr
(1) / et
oo x

/2
@ [ s,
0 a + smn” @

> cosx
——d
) /_oo (T+az23 "

(4) TV dx.

0 x2+1

Additional reading:

D. Mitrinovi¢: Calculus of Residues, Groningen 1966.
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