3. THE ARGUMENT PRINCIPLE

3.1. The logarithm in the complex plane. The exponential function is locally
injective in C. In fact, assume

Denote z —t =z + iy, x,y € R. Then

1 =€t = ¢ = e"(cosy +isiny) = 1

{ ecosy =1
e’siny = 0.
Since

1=|e" ! = e,

we see that x = 0. Then cosy = 1, siny = 0 implies y = n - 2w. Therefore, the
nearest possible points z,t with e* = e’ have a distance 2w, and given any zg, €* is
injective in B(zo, 27).

So, we can locally define the inverse function log z for the exponential. Since

” = elogz — elog z+n-27rz’

log z has infinitely many branches. Denoting u 4 iv = log z, we get
z ="t = el = |z| =" = u =log|?|
and . . ‘
re'¥ =z = |z]e'? = e"e"
and so we may take v = ¢ = arg z. Hence
logz =log|z| +iargz +n-2mi

If v is now a closed path in C, and we consider logz on =, we easily see that
return to the original branch appears, if the winding number around z = 0 is zero;
otherwise we move to another branch. So, if we have a domain G C C\ {0}, then
log z is uniquely determined and analytic in G. This will be applied in the proof of
Theorem 3.3.

3.2. The argument principle. Assume f(z) is analytic around z = a and has a
zero of multiplicity m at z = a. Then f(2) = (2 —a)™g(2), g(a) # 0. Therefore,

- . (3.1)

Since g(a) # 0, ¢’(z)/g(z) is analytic around z = a. Similarly, if f(z) has a pole of
order m at z = a, and f(z) = (2 —a)""g(2), g(a) # 0, then

= + . (3.2)



Definition 3.1. Assume that f: G — C is analytic in an open set G C C except
for poles. Then f is said to be meromorphic in G.

Theorem 3.2. Assume that f: G — C is meromorphic in a convex region G except
for finitely many zeros aq,...,a, and poles by,...,b,, each counted according to
their multiplicity. If v is a piecewise continuously differentiable closed path in G
such that a; ¢ v(I), j=1,...,n, and b; gé*y([) j=1,...,m, then

a;) Zn(7 b
j=1
Proof. By the same idea as in (3.1) and (3.2),
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where g(z) is analytic non-zero in G. Since ¢'/g is analytic in G, residue theorem
and the Cauchy theorem result in
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Theorem 3.3. (Rouché). Let f, g be meromorphic in a convex region G and let

B(a,R) C G be a closed disc. Suppose f, g have no zeros and no poles on the circle
v=0B(a,R)={z€G||z—a| =R} and that |f(z) —g(2)| < |g(2)| for all z € ~.
Then

Hf —Vf=Hg = Vg,
where [y, g, TESP. Vi, Vg, are the number zeros, resp. poles, of f and g in {z €
G ||z —a| < R}, counted according to multiplicity.

Proof. By the assumption,

‘%—1‘<1 (3.3)

for all z € v. By the Theorem 3.2,
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= py — vy — (g —vg),
since the winding number of + for all zeros and polesin { z € G | |z—a| < R} equals
to one. On the other hand, by (3.3), f/g maps 7 into B(1,1), and so a fixed branch
of log(f/g) is a primitive of (f/g)’/(f/g). Integrating over ~, the logarithm doesn’t

change the branch, hence log(f/g) takes the same value at v(0) and (1) = ~(0)
resulting in
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The assertion now follows. [

14



