
3. The argument principle

3.1. The logarithm in the complex plane. The exponential function is locally
injective in C. In fact, assume

ez = et =⇒ ez−t = 1.

Denote z − t = x+ iy, x, y ∈ R. Then

1 = ex+iy = exeiy = ex(cos y + i sin y) = 1

=⇒ {
ex cos y = 1
ex sin y = 0.

Since
1 = |ez−t| = ex,

we see that x = 0. Then cos y = 1, sin y = 0 implies y = n · 2π. Therefore, the
nearest possible points z, t with ez = et have a distance 2π, and given any z0, ez is
injective in B(z0, 2π).

So, we can locally define the inverse function log z for the exponential. Since

z = elog z = elog z+n·2πi,

log z has infinitely many branches. Denoting u+ iv = log z, we get

z = eu+iv = eueiv =⇒ |z| = eu =⇒ u = log |z|

and
reiϕ = z = |z|eiϕ = eueiv

and so we may take v = ϕ = arg z. Hence

log z = log |z|+ i arg z + n · 2πi

If γ is now a closed path in C, and we consider log z on γ, we easily see that
return to the original branch appears, if the winding number around z = 0 is zero;
otherwise we move to another branch. So, if we have a domain G ⊂ C \ {0}, then
log z is uniquely determined and analytic in G. This will be applied in the proof of
Theorem 3.3.

3.2. The argument principle. Assume f(z) is analytic around z = a and has a
zero of multiplicity m at z = a. Then f(z) = (z − a)mg(z), g(a) 6= 0. Therefore,

f ′(z)
f(z)

=
m

z − a
+
g′(z)
g(z)

. (3.1)

Since g(a) 6= 0, g′(z)/g(z) is analytic around z = a. Similarly, if f(z) has a pole of
order m at z = a, and f(z) = (z − a)−mg(z), g(a) 6= 0, then

f ′(z)
f(z)

= − m

z − a
+
g′(z)
g(z)

. (3.2)
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Definition 3.1. Assume that f : G → C is analytic in an open set G ⊂ C except
for poles. Then f is said to be meromorphic in G.

Theorem 3.2. Assume that f : G→ C is meromorphic in a convex region G except
for finitely many zeros a1, . . . , an and poles b1, . . . , bn, each counted according to
their multiplicity. If γ is a piecewise continuously differentiable closed path in G
such that aj /∈ γ(I), j = 1, . . . , n, and bj /∈ γ(I), j = 1, . . . ,m, then

1
2πi

∫
γ

f ′(ζ)
f(ζ)

dζ =
n∑
j=1

n(γ, aj)−
m∑
j=1

n(γ, bj).

Proof. By the same idea as in (3.1) and (3.2),

f ′(z)
f(z)

=
n∑
j=1

1
z − aj

−
m∑
j=1

1
z − bj

+
g′(z)
g(z)

,

where g(z) is analytic non-zero in G. Since g′/g is analytic in G, residue theorem
and the Cauchy theorem result in

1
2πi

∫
γ

f ′(ζ)
f(ζ)

dζ =
1

2πi

n∑
j=1

∫
γ

1
ζ − aj

dζ − 1
2πi

m∑
j=1

∫
γ

1
ζ − bj

dζ

=
n∑
j=1

n(γ, aj)−
m∑
j=1

n(γ, bj). �

Theorem 3.3. (Rouché). Let f , g be meromorphic in a convex region G and let
B(a,R) ⊂ G be a closed disc. Suppose f , g have no zeros and no poles on the circle
γ = ∂B(a,R) = { z ∈ G | |z− a| = R } and that |f(z)− g(z)| < |g(z)| for all z ∈ γ.
Then

µf − νf = µg − νg,
where µf , µg, resp. νf , νg, are the number zeros, resp. poles, of f and g in { z ∈
G | |z − a| < R }, counted according to multiplicity.

Proof. By the assumption, ∣∣∣∣f(z)
g(z)

− 1
∣∣∣∣ < 1 (3.3)

for all z ∈ γ. By the Theorem 3.2,

1
2πi

∫
γ

(
f(ζ)/g(ζ)

)′(
f(ζ)/g(ζ)

) dζ =
1

2πi

∫
γ

f ′(ζ)
f(ζ)

dζ − 1
2πi

∫
γ

g′(ζ)
g(ζ)

dζ

= µf − νf − (µf − νg),

since the winding number of γ for all zeros and poles in { z ∈ G | |z−a| < R } equals
to one. On the other hand, by (3.3), f/g maps γ into B(1, 1), and so a fixed branch
of log(f/g) is a primitive of (f/g)′/(f/g). Integrating over γ, the logarithm doesn’t
change the branch, hence log(f/g) takes the same value at γ(0) and γ(1) = γ(0)
resulting in

1
2πi

∫
γ

(
f(ζ)/g(ζ)

)′(
f(ζ)/g(ζ)

) dζ = 0.

The assertion now follows. �
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