4. INFINITE PRODUCTS

The basic idea here is to separate the zeros (and poles) of a meromorphic function f(z) as a product component of f(z). In principle, this results in an infinite product. To this end, we first prove

Theorem 4.1. If f(z) is an entire function with no zeros, then there exists another entire function g(z) such that

$$f(z) = e^{g(z)}$$

Proof. Since $f(z) \neq 0$ for all $z \in \mathbb{C}$, then $\frac{f'(z)}{f(z)}$ is entire. Therefore,

$$\frac{f'(z)}{f(z)} = \sum_{j=0}^{\infty} a_j z^j = a_0 + a_1 z + a_2 z^2 + \cdots$$

is a power series representation converging in the whole \mathbb{C} . Consider

$$h(z) = a_0 z + \frac{1}{2}a_1 z^2 + \frac{1}{3}a_3 z^3 + \dots = z(a_0 + \frac{1}{2}a_1 z + \frac{1}{3}a_3 z^2 + \dots).$$
(4.1)

Since

$$\limsup_{j \to \infty} \sqrt[j]{\frac{1}{j+1}|a_j|} = \limsup_{j \to \infty} \frac{1}{\sqrt[j]{j+1}} \sqrt[j]{|a_j|} = \limsup_{j \to \infty} \sqrt[j]{|a_j|} = 0,$$

hence the power series (4.1) has radius of convergence $= \infty$. Therefore, (4.1) determines an entire function. Differentiating term by term, as we may do for a converging power series, we get

$$h'(z) = \frac{f'(z)}{f(z)}.$$

Define now

$$\varphi(z) := f(z)e^{-h(z)},$$

hence

$$\varphi'(z) = f'(z)e^{-h(z)} - f(z)h'(z)e^{-h(z)} = e^{-h(z)} \left(f'(z) - f(z)h'(z) \right) \equiv 0.$$

Therefore, $\varphi(z)$ is constant, say $\varphi(z) \equiv e^a$, $a \in \mathbb{C}$. Note that $\varphi(z) \neq 0$ for all $z \in \mathbb{C}$. So,

$$f(z)e^{-h(z)} = e^a \implies f(z) = e^{a+h(z)}.$$

Defining g(z) := a + h(z), we have the assertion. \Box

Definition 4.2. The infinite product $\prod_{j=1}^{\infty} b_j$ of complex numbers b_j converges, if there exists

$$\lim_{n \to \infty} \prod_{j=1}^n b_j \neq 0.$$

Remark. Define $P_n := \prod_{j=1}^n b_i$. Clearly, $\prod_{j=1}^\infty b_j$ converges if and only if (P_n) converges and $\lim_{n\to\infty} P_n \neq 0$. Then $b_n = P_n/P_{n-1}$ and there exists

$$\lim_{n \to \infty} b_n = \frac{\lim_{n \to \infty} P_n}{\lim_{n \to \infty} P_{n-1}} = 1.$$
(4.2)

Therefore, it is customary to use the notation

$$b_n = 1 + a_n;$$

then $\lim_{n\to\infty} a_n = 0$ by (4.2).

Theorem 4.3. If $a_j \ge 0$ for all $j \in \mathbb{N}$, then $\prod_{j=1}^{\infty} (1+a_j)$ converges if and only if $\sum_{j=1}^{\infty} a_j$ converges.

Proof. Observe first that $P_n := \prod_{j=1}^n (1 + a_j)$ is a non-decreasing sequence, since $a_j \ge 0$. Therefore, (P_n) either converges to a finite (real) value, or to $+\infty$. Clearly,

$$a_1 + a_2 + \dots + a_n \le (1 + a_1)(1 + a_2) \cdots (1 + a_n)$$

On the other hand,

$$(1+a_1)\cdots(1+a_n) \le e^{a_1}\cdots e^{a_n} = e^{a_1+\cdots+a_n}$$

since $e^x \ge 1 + x$ for every $x \ge 0$. So, we have

$$\sum_{j=1}^{n} a_j \le \prod_{j=1}^{n} (1+a_j) \le e^{\sum_{j=1}^{n} a_j}.$$
(4.3)

If $(\sum_{j=1}^{n} a_j)_{n \in \mathbb{N}}$ converges, then $(e^{\sum_{j=1}^{n} a_j})_{n \in \mathbb{N}}$ converges by the continuity of the exponential function. This implies that the increasing sequence $(\prod_{j=1}^{n} (1+a_j))_{n \in \mathbb{N}}$ converges to a non-zero limit by (4.3). If $(\prod_{j=1}^{n} (1+a_j))_{n \in \mathbb{N}}$ converges, then the increasing sequence $(\sum_{j=1}^{n} a_j)_{n \in \mathbb{N}}$ converges, again by (4.3). \Box

Theorem 4.4. If $a_j \ge 0$, $a_j \ne 1$, for all $j \in \mathbb{N}$, then $\prod_{j=1}^{\infty} (1-a_j)$ converges if and only if $\sum_{j=1}^{\infty} a_j$ converges.

Proof. (1) Assume $\sum_{j=1}^{\infty} a_j$ converges. By the Cauchy criterium,

$$\sum_{j=N}^{\infty} a_j < \frac{1}{2}$$

for N sufficiently large; then also $a_j < 1, j \ge N$. Observe that

$$(1 - a_N)(1 - a_{N+1}) = 1 - a_N - a_{N+1} + a_N a_{N+1}$$

$$\geq 1 - a_N - a_{N+1} \quad \left(= 1 - (a_N + a_{N+1}) > \frac{1}{2}\right).$$

Assume we have proved

$$(1 - a_N)(1 - a_{N+1}) \cdots (1 - a_n) \ge 1 - a_N - a_{N+1} - \dots - a_n.$$
(4.4)

Then

$$(1 - a_N)(1 - a_{N+1}) \cdots (1 - a_n)(1 - a_{n+1})$$

$$\geq (1 - a_N - a_{N+1} - \dots - a_n)(1 - a_{n+1})$$

$$= 1 - a_N - a_{N+1} - \dots - a_n - a_{n+1} + (a_N + \dots + a_n)a_{n+1}$$

$$\geq 1 - a_N - a_{N+1} - \dots - a_{n+1},$$

and so (4.4) is true for all $n \ge N$. Therefore

$$(1-a_N)(1-a_{N+1})\cdots(1-a_n) \ge 1-(a_N+\cdots+a_n) > \frac{1}{2}$$

This implies that the decreasing sequence $\prod_{j=N}^{\infty}(1-a_j)$ converges to a limit $P \geq \frac{1}{2}$. If N is sufficiently large, then $0 < 1 - a_j < 1$ and so $P \leq 1$. Writing, for n > N,

$$P_n = \prod_{j=1}^n (1 - a_j) = P_{N-1} \cdot \prod_{j=N}^n (1 - a_j),$$

we get

$$\lim_{n \to \infty} P_n = P_{N-1} \cdot \lim_{n \to \infty} \prod_{j=N}^n (1 - a_j) = P_{N-1} \cdot P = (1 - a_1) \cdots (1 - a_{N-1}) P \neq 0,$$

so $\prod_{j=1}^{\infty} (1-a_j)$ converges.

(2) Assume now that $\sum_{j=1}^{\infty} a_j$ diverges. If a_j does not converge to zero, then $1 - a_j$ does not converge to one. By the Remark after Definition 4.2, $\prod_{j=1}^{\infty} (1 - a_j)$ diverges.

So, we may assume that $\lim_{j\to\infty} a_j = 0$. Let N be sufficiently large so that $0 \le a_j < 1$ for $j \ge N$. Since $1 - x \le e^{-x}$ for $0 \le x < 1$, we have

$$1 - a_j \le e^{-a_j}, \qquad j \ge N.$$

Therefore,

$$0 \le \prod_{j=N}^{n} (1-a_j) \le \prod_{j=N}^{n} e^{-a_j} = e^{-\sum_{j=N}^{n} a_j}, \qquad n > N.$$

Since $\sum_{j=N}^{\infty} a_j$ diverges, $\lim_{n\to\infty} \sum_{j=N}^n a_j = +\infty$, and so $\lim_{n\to\infty} e^{-\sum_{j=N}^n a_j} = 0$, implying that

$$\lim_{n \to \infty} \prod_{j=1}^{n} (1 - a_j) = 0.$$

By Definition 4.2, $\prod_{j=1}^{\infty} (1-a_j)$ diverges. \Box

Definition 4.5. The infinite product $\prod_{j=1}^{\infty} (1 + a_j)$ is absolutely convergent, if $\prod_{j=1}^{\infty} (1 + |a_j|)$ converges.

Remark. By Theorem 4.3, this is the case if and only if $\sum_{j=1}^{\infty} |a_j|$ converges.

Theorem 4.6. An absolutely convergent infinite product is convergent. Proof. Denote

$$P_n = \prod_{j=1}^n (1+a_j)$$
 and $Q_n := \prod_{j=1}^n (1+|a_j|)$

Then

$$P_n - P_{n-1} = \prod_{j=1}^n (1+a_j) - \prod_{j=1}^{n-1} (1+a_j)$$
$$= \left(\prod_{j=1}^{n-1} (1+a_j)\right)(1+a_n-1) = a_n \prod_{j=1}^{n-1} (1+a_j)$$

and, similarly,

$$Q_n - Q_{n-1} = |a_n| \prod_{j=1}^{n-1} (1 + |a_j|).$$

Clearly,

$$|P_n - P_{n-1}| \le Q_n - Q_{n-1}.$$

Since $\prod_{j=1}^{\infty} (1 + |a_j|)$ converges, $\lim_{n\to\infty} Q_n$ exists. Therefore, $\sum_{j=1}^{\infty} (Q_n - Q_{n-1})$ converges, and so by the standard majorant principle, $\sum_{j=1}^{\infty} (P_n - P_{n-1})$ converges, implying that $\lim_{n\to\infty} P_n$ exists.

It remains to show that this limit is non-zero. Since $\sum_{j=1}^{\infty} |a_j|$ converges, $\lim_{n\to\infty} a_n = 0$, and so $\lim_{n\to\infty} (1+a_n) = 1$. Therefore, $\sum_{j=1}^{\infty} |\frac{a_j}{1+a_j}|$ converges by the majorant principle, since $|1+a_j| \ge \frac{1}{2}$ for j large enough and so $|\frac{a_j}{1+a_j}| \le 2|a_j|$. Therefore

$$\prod_{j=1}^{\infty} \left(1 - \frac{a_j}{1 + a_j} \right)$$

is absolutely convergent. By the preceding part of the proof, a finite limit

$$\lim_{n \to \infty} \prod_{j=1}^n \left(1 - \frac{a_j}{1 + a_j} \right)$$

exists. But

$$\prod_{j=1}^{n} \left(1 - \frac{a_j}{1 + a_j} \right) = \prod_{j=1}^{n} \frac{1}{1 + a_j} = \frac{1}{\prod_{j=1}^{n} (1 + a_j)} = \frac{1}{P_n}$$

and so $\lim_{n\to\infty} P_n \neq 0$. \Box

Consider finally a sequence $(f_j(z))_{j \in \mathbb{N}}$ of analytic functions in a domain $G \subset \mathbb{C}$. Similarly as to Definition 4.2, we say that

$$\prod_{j=1}^{\infty} \left(1 + f_j(z) \right)$$

converges in G, if

$$\lim_{n \to \infty} \prod_{j=1}^{n} \left(1 + f_j(z) \right) \neq 0$$

exists for each $z \in G$.

Theorem 4.7. The infinite product $\prod_{j=1}^{\infty} (1+f_j(z))$ is uniformly convergent in G, if the series $\sum_{j=1}^{\infty} |f_j(z)|$ converges uniformly in G.

Proof. Assume

$$\sum_{j=1}^{\infty} |f_j(z)| < M(<\infty)$$

for all $z \in G$. Then by (4.3),

$$(1+|f_1(z)|)\cdots(1+|f_n(z)|) \le e^{|f_1(z)|+\cdots+|f_n(z)|} \le e^M.$$

Denote

$$P_n(z) := \prod_{j=1}^n (1 + |f_j(z)|).$$

Then

$$P_n(z) - P_{n-1}(z) = |f_n(z)| (1 + |f_1(z)|) \cdots (1 + |f_n(z)|) \le e^M |f_n(z)|.$$

Since

$$\sum_{j=2}^{\infty} (P_n(z) - P_{n-1}(z)) \le e^M \sum_{j=2}^{\infty} |f_j(z)| \le e^M \sum_{j=1}^{\infty} |f_j(z)|,$$

 $\sum_{j=2}^{\infty} (P_n(z) - P_{n-1}(z))$ converges uniformly, and so (P_n) as well. This means that $\prod_{j=1}^{\infty} (1+f_j(z))$ is absolutely (uniformly) convergent, hence (uniformly) convergent by Theorem 4.6. \Box

Exercises.

- (1) Show that $\prod_{n=1}^{\infty} \left(1 \frac{2}{(n+1)(n+2)} \right) = \frac{1}{3}.$ (2) Show that $\prod_{n=3}^{\infty} \frac{n^2 - 4}{n^2 - 1} = \frac{1}{4}.$ (3) Show that $\prod_{n=2}^{\infty} \frac{n^3 - 1}{n^3 + 1}$ converges. (4) Determine whether or not $\prod_{n=0}^{\infty} (1 - 2^{-n})$ is convergent. (5) Prove that $\prod_{k=0}^{\infty} \left(1 + \frac{z^k}{k!} \right)$ defines an entire function.
- (6) Prove that $\prod_{k=0}^{\infty} (1+z^{2^k}) = \frac{1}{1-z}$ for all z in the unit disc |z| < 1.