
4. Infinite products

The basic idea here is to separate the zeros (and poles) of a meromorphic function
f(z) as a product component of f(z). In principle, this results in an infinite product.
To this end, we first prove

Theorem 4.1. If f(z) is an entire function with no zeros, then there exists another
entire function g(z) such that

f(z) = eg(z).

Proof. Since f(z) 6= 0 for all z ∈ C, then f ′(z)
f(z) is entire. Therefore,

f ′(z)
f(z)

=
∞∑
j=0

ajz
j = a0 + a1z + a2z

2 + · · · .

is a power series representation converging in the whole C. Consider

h(z) = a0z + 1
2a1z

2 + 1
3a3z

3 + · · · = z(a0 + 1
2a1z + 1

3a3z
2 + · · · ). (4.1)

Since

lim sup
j→∞

j

√
1

j + 1
|aj | = lim sup

j→∞

1
j
√
j + 1

j

√
|aj | = lim sup

j→∞

j

√
|aj | = 0,

hence the power series (4.1) has radius of convergence = ∞. Therefore, (4.1)
determines an entire function. Differentiating term by term, as we may do for a
converging power series, we get

h′(z) =
f ′(z)
f(z)

.

Define now
ϕ(z) := f(z)e−h(z),

hence

ϕ′(z) = f ′(z)e−h(z) − f(z)h′(z)e−h(z) = e−h(z)(f ′(z)− f(z)h′(z)
)
≡ 0.

Therefore, ϕ(z) is constant, say ϕ(z) ≡ ea, a ∈ C. Note that ϕ(z) 6= 0 for all z ∈ C.
So,

f(z)e−h(z) = ea =⇒ f(z) = ea+h(z).

Defining g(z) := a+ h(z), we have the assertion. �

Definition 4.2. The infinite product
∏∞
j=1 bj of complex numbers bj converges, if

there exists

lim
n→∞

n∏
j=1

bj 6= 0.

15



Remark. Define Pn :=
∏n
j=1 bi. Clearly,

∏∞
j=1 bi converges if and only if (Pn)

converges and limn→∞ Pn 6= 0. Then bn = Pn/Pn−1 and there exists

lim
n→∞

bn =
limn→∞ Pn

limn→∞ Pn−1
= 1. (4.2)

Therefore, it is customary to use the notation

bn = 1 + an;

then limn→∞ an = 0 by (4.2).

Theorem 4.3. If aj ≥ 0 for all j ∈ N, then
∏∞
j=1(1 + aj) converges if and only if∑∞

j=1 aj converges.

Proof. Observe first that Pn :=
∏n
j=1(1 + aj) is a non-decreasing sequence, since

aj ≥ 0. Therefore, (Pn) either converges to a finite (real) value, or to +∞. Clearly,

a1 + a2 + · · ·+ an ≤ (1 + a1)(1 + a2) · · · (1 + an).

On the other hand,

(1 + a1) · · · (1 + an) ≤ ea1 · · · ean = ea1+···+an ,

since ex ≥ 1 + x for every x ≥ 0. So, we have

n∑
j=1

aj ≤
n∏
j=1

(1 + aj) ≤ e
Pn
j=1 aj . (4.3)

If (
∑n
j=1 aj)n∈N converges, then (e

Pn
j=1 aj )n∈N converges by the continuity of the

exponential function. This implies that the increasing sequence
(∏n

j=1(1 +aj)
)
n∈N

converges to a non-zero limit by (4.3). If
(∏n

j=1(1 + aj)
)
n∈N converges, then the

increasing sequence (
∑n
j=1 aj)n∈N converges, again by (4.3). �

Theorem 4.4. If aj ≥ 0, aj 6= 1, for all j ∈ N, then
∏∞
j=1(1 − aj) converges if

and only if
∑∞
j=1 aj converges.

Proof. (1) Assume
∑∞
j=1 aj converges. By the Cauchy criterium,

∞∑
j=N

aj <
1
2

for N sufficiently large; then also aj < 1, j ≥ N . Observe that

(1− aN )(1− aN+1) = 1− aN − aN+1 + aNaN+1

≥ 1− aN − aN+1
(
= 1− (aN + aN+1) > 1

2

)
.

Assume we have proved

(1− aN )(1− aN+1) · · · (1− an) ≥ 1− aN − aN+1 − · · · − an. (4.4)
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Then

(1− aN )(1− aN+1) · · · (1− an)(1− an+1)

≥ (1− aN − aN+1 − · · · − an)(1− an+1)

= 1− aN − aN+1 − · · · − an − an+1 + (aN + · · ·+ an)an+1

≥ 1− aN − aN+1 − · · · − an+1,

and so (4.4) is true for all n ≥ N . Therefore

(1− aN )(1− aN+1) · · · (1− an) ≥ 1− (aN + · · ·+ an) > 1
2 .

This implies that the decreasing sequence
∏∞
j=N (1−aj) converges to a limit P ≥ 1

2 .
If N is sufficiently large, then 0 < 1− aj < 1 and so P ≤ 1. Writing, for n > N ,

Pn =
n∏
j=1

(1− aj) = PN−1 ·
n∏

j=N

(1− aj),

we get

lim
n→∞

Pn = PN−1 · lim
n→∞

n∏
j=N

(1− aj) = PN−1 · P = (1− a1) · · · (1− aN−1)P 6= 0,

so
∏∞
j=1(1− aj) converges.

(2) Assume now that
∑∞
j=1 aj diverges. If aj does not converge to zero, then

1− aj does not converge to one. By the Remark after Definition 4.2,
∏∞
j=1(1− aj)

diverges.
So, we may assume that limj→∞ aj = 0. Let N be sufficiently large so that

0 ≤ aj < 1 for j ≥ N . Since 1− x ≤ e−x for 0 ≤ x < 1, we have

1− aj ≤ e−aj , j ≥ N.

Therefore,

0 ≤
n∏

j=N

(1− aj) ≤
n∏

j=N

e−aj = e−
Pn
j=N aj , n > N.

Since
∑∞
j=N aj diverges, limn→∞

∑n
j=N aj = +∞, and so limn→∞ e−

Pn
j=N aj = 0,

implying that

lim
n→∞

n∏
j=1

(1− aj) = 0.

By Definition 4.2,
∏∞
j=1(1− aj) diverges. �

Definition 4.5. The infinite product
∏∞
j=1(1 + aj) is absolutely convergent, if∏∞

j=1(1 + |aj |) converges.

Remark. By Theorem 4.3, this is the case if and only if
∑∞
j=1 |aj | converges.
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Theorem 4.6. An absolutely convergent infinite product is convergent.

Proof. Denote

Pn =
n∏
j=1

(1 + aj) and Qn :=
n∏
j=1

(1 + |aj |).

Then

Pn − Pn−1 =
n∏
j=1

(1 + aj)−
n−1∏
j=1

(1 + aj)

=
(n−1∏
j=1

(1 + aj)
)

(1 + an − 1) = an

n−1∏
j=1

(1 + aj)

and, similarly,

Qn −Qn−1 = |an|
n−1∏
j=1

(1 + |aj |).

Clearly,
|Pn − Pn−1| ≤ Qn −Qn−1.

Since
∏∞
j=1(1 + |aj |) converges, limn→∞Qn exists. Therefore,

∑∞
j=1(Qn − Qn−1)

converges, and so by the standard majorant principle,
∑∞
j=1(Pn−Pn−1) converges,

implying that limn→∞ Pn exists.
It remains to show that this limit is non-zero. Since

∑∞
j=1 |aj | converges,

limn→∞ an = 0, and so limn→∞(1 + an) = 1. Therefore,
∑∞
j=1 |

aj
1+aj
| converges by

the majorant principle, since |1 + aj | ≥ 1
2 for j large enough and so | aj1+aj

| ≤ 2|aj |.
Therefore

∞∏
j=1

(
1− aj

1 + aj

)
is absolutely convergent. By the preceding part of the proof, a finite limit

lim
n→∞

n∏
j=1

(
1− aj

1 + aj

)
exists. But

n∏
j=1

(
1− aj

1 + aj

)
=

n∏
j=1

1
1 + aj

=
1∏n

j=1(1 + aj)
=

1
Pn

,

and so limn→∞ Pn 6= 0. �

Consider finally a sequence
(
fj(z)

)
j∈N of analytic functions in a domain G ⊂ C.

Similarly as to Definition 4.2, we say that
∞∏
j=1

(
1 + fj(z)

)
converges in G, if

lim
n→∞

n∏
j=1

(
1 + fj(z)

)
6= 0

exists for each z ∈ G.
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Theorem 4.7. The infinite product
∏∞
j=1

(
1+fj(z)

)
is uniformly convergent in G,

if the series
∑∞
j=1 |fj(z)| converges uniformly in G.

Proof. Assume
∞∑
j=1

|fj(z)| < M(<∞)

for all z ∈ G. Then by (4.3),(
1 + |f1(z)|

)
· · ·
(
1 + |fn(z)|

)
≤ e|f1(z)|+···+|fn(z)| ≤ eM .

Denote

Pn(z) :=
n∏
j=1

(
1 + |fj(z)|

)
.

Then

Pn(z)− Pn−1(z) = |fn(z)|
(
1 + |f1(z)|

)
· · ·
(
1 + |fn(z)|

)
≤ eM |fn(z)|.

Since
∞∑
j=2

(
Pn(z)− Pn−1(z)

)
≤ eM

∞∑
j=2

|fj(z)| ≤ eM
∞∑
j=1

|fj(z)|,

∑∞
j=2

(
Pn(z)−Pn−1(z)

)
converges uniformly, and so (Pn) as well. This means that∏∞

j=1

(
1+fj(z)

)
is absolutely (uniformly) convergent, hence (uniformly) convergent

by Theorem 4.6. �

Exercises.

(1) Show that
∞∏
n=1

(
1− 2

(n+ 1)(n+ 2)

)
= 1

3 .

(2) Show that
∞∏
n=3

n2 − 4
n2 − 1

= 1
4 .

(3) Show that
∞∏
n=2

n3 − 1
n3 + 1

converges.

(4) Determine whether or not
∞∏
n=0

(1− 2−n) is convergent.

(5) Prove that
∞∏
k=0

(
1 +

zk

k!

)
defines an entire function.

(6) Prove that
∞∏
k=0

(1 + z2k) =
1

1− z
for all z in the unit disc |z| < 1.
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