5. Weierstrass factorization theorem

Consider a polynomial P(z) with (all) zeros z_1, \ldots, z_n . Then

$$P(z) = C(z_1 - z) \cdots (z_n - z) \qquad (C \text{ constant})$$
$$= Cz_1 \cdots z_n \left(1 - \frac{z}{z_1}\right) \cdots \left(1 - \frac{z}{z_n}\right)$$
$$= P(0) \left(1 - \frac{z}{z_1}\right) \cdots \left(1 - \frac{z}{z_n}\right).$$

Let now f(z) be an entire function with zeros $z_1, z_2, \ldots, z_n, \ldots$ arranged by increasing moduli, i.e.,

$$0 \le |z_1| \le |z_2| \le \cdots \le |z_n| \le \cdots$$

By the uniqueness theorem of analytic functions, $\lim_{n\to\infty} |z_m| = \infty$. Assume $z_1 \neq 0$. Then a factorization similar to the polynomial case above is not immediate, since

$$\prod_{j=1}^{\infty} \left(1 - \frac{z}{z_j} \right)$$

may diverge. Therefore, we must somehow modify the situation to ensure the convergence. This may be done by the following

Theorem 5.1. (Weierstraß). Let $(z_m)_{n \in \mathbb{N}}$ be an arbitrary sequence of complex numbers different from zero, arranged by increasing moduli and $\lim_{n\to\infty} |z_n| = \infty$ and let $m \in \mathbb{N} \cup \{0\}$. Then there exist $\nu \in \mathbb{N} \cup \{0\}$, $\nu = \nu(j)$, such that $\sum_{j=1}^{\infty} |z_j|^{-(\nu+1)}$ converges uniformly in \mathbb{C} and that for the polynomial

$$Q_{\nu}(z) := z + \frac{1}{2}z^2 + \dots + \frac{1}{\nu}z^{\nu}, \qquad \nu \ge 1; \quad Q_0(z) \equiv 0,$$

and for an arbitrary entire function g(z),

$$G(z) := e^{g(z)} z^m \prod_{j=1}^{\infty} \left(1 - \frac{z}{z_j} \right) e^{Q_{\nu}(\frac{z}{z_j})}$$
(5.1)

is an entire function with a zero of multiplicity m at z = 0 and with the other zeros exactly at (z_n) .

Remark. The sequence (z_n) is not necessarily formed by distinct points.

Before proceeding to prove Theorem 5.1, we consider the function (entire)

$$E_{\nu}(z) := (1-z)e^{Q_{\nu}(z)}, \quad \nu \ge 1; \quad E_0(z) := 1-z,$$

called usually as the Weierstraß factor.

We first prove three basic properties for $E_{\nu}(z)$:

(1)
$$E'_{\nu}(z) = -z^{\nu} e^{Q_{\nu}(z)}$$
 for $\nu \ge 1$:
 $E'_{\nu}(z) = -e^{Q_{\nu}(z)} + (1-z)(1+z+\dots+z^{\nu-1})e^{Q_{\nu}(z)}$
 $= e^{Q_{\nu}(z)}(-1+1+\dots+z^{\nu-1}-z-z^2-\dots-z^{\nu}) = -z^{\nu}e^{Q_{\nu}(z)}.$

(2) $E_{\nu}(z) = 1 + \sum_{j>\nu} a_j z^j$ with $\sum_{j>\nu} |a_j| = 1$ for $\nu \ge 0$.

For $\nu = 0$, this is trivial. Since $E_{\nu}(z)$ is entire, we may consider its Taylor expansion around z = 0:

$$E_{\nu}(z) = \sum_{j=0}^{\infty} a_j z^j.$$

Differentiating, we get

$$\sum_{j=1}^{\infty} j a_j z^{j-1} = E'_{\nu}(z) = -z^{\nu} e^{Q_{\nu}(z)}.$$

Expanding the right hand around z = 0, we get $-z^{\nu} \sum_{j=0}^{\infty} \beta_j z^j$ with $\beta_j \ge 0$ for all j. Therefore $a_1 = a_2 = \cdots = a_{\nu} = 0$ and $a_j \le 0$ for $j > \nu$, hence $|a_{\nu}| = -a_{\nu}$ for $j > \nu$. Moreover, $a_0 = E_{\nu}(0) = 1$ and

$$0 = E_{\nu}(1) = 1 + \sum_{j > \nu} a_j;$$

thus

$$\sum_{j > \nu} a_j = -\sum_{j > \nu} |a_j| = -1,$$

resulting in the assertion.

(3) If $|z| \le 1$, then $|E_{\nu}(z) - 1| \le |z|^{\nu+1}$, $\nu \ge 0$. By (2),

$$|E_{\nu}(z) - 1| = \left| \sum_{j=\nu+1}^{\infty} a_j z^j \right| \le \sum_{j=\nu+1}^{\infty} |a_j| |z|^j$$
$$= |z|^{\nu+1} \sum_{j=\nu+1}^{\infty} |a_j| |z|^{j-(\nu+1)} \le |z|^{\nu+1} \sum_{j>\nu} |a_j| = |z|^{\nu+1}.$$

Proof of Theorem 5.1. We consider $E_{\nu}(\frac{z}{z_j})$ for $j \in \mathbb{N}$. The idea is to determine ν so that $\prod_{j=1}^{\infty} E_{\nu}(\frac{z}{z_j})$ converges absolutely and uniformly for |z| < R, R large enough. To this end, fix R > 1 and $0 < \alpha < 1$. Since $\lim_{n \to \infty} |z_m| = \infty$, we find q such that $|z_q| \leq \frac{R}{\alpha}$, while $|z_{q+1}| > \frac{R}{\alpha}$. Then $\prod_{j=1}^{q} E_{\nu}(\frac{z}{z_j})$ is an entire function as a finite product of entire functions. Consider now the remainder term

$$\prod_{j=q+1}^{\infty} E_{\nu}\left(\frac{z}{z_j}\right)$$
21

in the disc $|z| \leq R$. Since j > q, $|z_j| > \frac{R}{\alpha}$ and so

$$|z/z_j| < \alpha < 1.$$

Writing

$$E_{\nu}\left(\frac{z}{z_j}\right) = \left(1 - \frac{z}{z_j}\right)e^{Q_{\nu}\left(\frac{z}{z_j}\right)} = 1 + U_j(z),$$

we proceed to estimate $U_j(z)$. Since j > q, and $|z/z_j| < 1$, (3) above implies

$$|U_j(z)| = \left| E_\nu\left(\frac{z}{z_j}\right) - 1 \right| \le \left|\frac{z}{z_j}\right|^{\nu+1}.$$
(5.2)

We now divide our consideration in two cases:

Case I: There exists $p \in \mathbb{N}$ s.th. $\sum_{j=1}^{\infty} |z_j|^{-p} < \infty$. In this case, we define $\nu := p - 1$. From (4.5), we obtain

$$|U_j(z)| \le R^p |z_j|^{-p},$$

since $|z| \leq R$. Therefore,

$$\sum_{j=1}^{\infty} |U_j(z)| \le R^p \sum_{j=1}^{\infty} |z_j|^{-p} < \infty$$

for $|z| \leq R$. By Theorem 4.3 and Definition 4.6,

$$\prod_{j=q+1}^{\infty} \left(1 + U_j(z) \right) = \prod_{j=q+1}^{\infty} E_{\nu} \left(\frac{z}{z_j} \right)$$

converges absolutely and uniformly.

Case II: For all $p \in \mathbb{N}$, $\sum_{j=1}^{\infty} |z_j|^{-p} = \infty$. In this case, we take $\nu = j - 1$, so ν depends on j. Then, by (5.2) again

$$|U_j(z)| \le \left|\frac{z}{z_j}\right|^j$$

provided j > q (which means $|\frac{z}{z_j}| < \alpha < 1$) and $|z| \le R$. Since $|z/z_j| < \alpha < 1$, we have

$$\limsup_{j \to \infty} \sqrt[j]{\left|\frac{z}{z_j}\right|^j} \le \alpha < 1,$$

and therefore, by the root test, which carries over from the (real) analysis word by word, $\sum_{j=q+1}^{\infty} |U_j(z)|$ converges. As above, we get that $\prod_{j=q+1}^{\infty} E_{\nu}(\frac{z}{z_j})$ converges absolutely and uniformly for $|z| \leq R$. If we now have proved that $\prod_{j=1}^{\infty} E_{\nu}(\frac{z}{z_j})$ is analytic in \mathbb{C} , then G(z) is entire and has exactly the desired zeros. Therefore, it remains to prove **Theorem 5.2.** If $(f_n(z))$ is a sequence of analytic functions in a domain G and if there exists

$$\lim_{n \to \infty} f_n(z) = f(z) \tag{5.3}$$

uniformly in closed subdomains of G, then f(z) is analytic and $f'(z) = \lim_{n \to \infty} f'_n(z)$.

Proof. This is a consequence of the Cauchy integral formula. In fact, fix $z \in G$ arbitrarily and let B(z,r) be a disc s.th. $\overline{B(z,r)} \subset G$. By the Cauchy formula,

$$f_n(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f_n(\zeta)}{\zeta - z} d\zeta, \qquad n \in \mathbb{N}.$$

Since the convergence is uniform on ∂B ,

$$|f_n(\zeta) - f(\zeta)| < \varepsilon$$

for $n \ge n_{\varepsilon}$ and for all $\zeta \in \partial B$. Therefore,

$$\left| \frac{1}{2\pi i} \int_{\partial B} \frac{f_n(\zeta)}{\zeta - z} \, d\zeta - \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta - z} \, d\zeta \right|$$

$$\leq \frac{1}{2\pi} \int_{\partial B} \frac{|f_n(\zeta) - f(\zeta)|}{|\zeta - z|} \, |d\zeta| \leq \frac{\varepsilon \cdot 2\pi r}{2\pi \cdot r} = \varepsilon,$$

and so

$$\lim_{n \to \infty} \frac{1}{2\pi i} \int_{\partial B} \frac{f_n(\zeta)}{\zeta - z} \, d\zeta = \frac{1}{2\pi i} \int_{\partial B} \int_{\partial B} \frac{f(\zeta)}{\zeta - z} \, d\zeta.$$

By (5.3),

$$f(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Now, f'(z) exists, since

$$\begin{aligned} \frac{1}{h}[f(z+h) - f(z)] &= \frac{1}{2\pi h i} \int_{\partial B} \left(\frac{f(\zeta)}{\zeta - (z+h)} - \frac{f(\zeta)}{\zeta - z} \right) d\zeta \\ &= \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{(\zeta - z)(\zeta - (z+h))} d\zeta \to \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta. \end{aligned}$$

Therefore, f(z) is analytic. Since the limit (5.3) is uniform in ∂B , we get

$$f'(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta = \frac{1}{2\pi i} \int_{\partial B} \left(\lim_{n \to \infty} f_n(\zeta)\right) \frac{d\zeta}{(\zeta - z)^2}$$
$$= \lim_{n \to \infty} \frac{1}{2\pi i} \int_{\partial B} \frac{f_n(\zeta)}{(\zeta - z)^2} d\zeta. \quad \Box$$

Theorem 5.3. (Weierstraß product theorem). Let f(z) be entire with a zero of multiplicity $m \in \mathbb{N} \cup \{0\}$ at z = 0 and the zeros $z_j \neq 0$ s.th. $0 < |z_1| \le |z_2| \le \cdots$, possibly including repeated points. Let H(z) denote the Weierstraß product (5.1) with $g(z) \equiv 0$. Then there exists an entire function h(z) s.th.

$$f(z) = H(z)e^{h(z)}.$$
 (5.4)

Proof. Since f(z) and H(z) have exactly the same zeros, it is clear that f(z)/H(z) is entire with no zeros. Applying Theorem 4.1 results in (5.4)

Observe that Theorem 5.1 may be expressed as

Theorem 5.4. Let $(z_n)_{n \in \mathbb{N}}$ be a sequence the distinct complex numbers having no finite accumulation points, and let a sequence $(k_n)_{n \in \mathbb{N}}$ of natural numbers be given. Then there exists an entire function having roots of multiplicity k_n at z_n for all $n \in \mathbb{N}$, and nowhere else.