
5. Weierstrass factorization theorem

Consider a polynomial P (z) with (all) zeros z1, . . . , zn. Then

P (z) = C(z1 − z) · · · (zn − z) (C constant)

= Cz1 · · · zn
(

1− z

z1

)
· · ·
(

1− z

zn

)
= P (0)

(
1− z

z1

)
· · ·
(

1− z

zn

)
.

Let now f(z) be an entire function with zeros z1, z2, . . . , zn, . . . arranged by increas-
ing moduli, i.e.,

0 ≤ |z1| ≤ |z2| ≤ · · · ≤ |zn| ≤ · · · .

By the uniqueness theorem of analytic functions, limn→∞ |zm| =∞. Assume z1 6=
0. Then a factorization similar to the polynomial case above is not immediate, since

∞∏
j=1

(
1− z

zj

)

may diverge. Therefore, we must somehow modify the situation to ensure the
convergence. This may be done by the following

Theorem 5.1. (Weierstraß). Let (zm)n∈N be an arbitrary sequence of complex
numbers different from zero, arranged by increasing moduli and limn→∞ |zn| =
∞ and let m ∈ N ∪ {0}. Then there exist ν ∈ N ∪ {0}, ν = ν(j), such that∑∞
j=1 |zj |−(ν+1) converges uniformly in C and that for the polynomial

Qν(z) := z + 1
2z

2 + · · ·+ 1
ν z

ν , ν ≥ 1; Q0(z) ≡ 0,

and for an arbitrary entire function g(z),

G(z) := eg(z)zm
∞∏
j=1

(
1− z

zj

)
e
Qν( zzj ) (5.1)

is an entire function with a zero of multiplicity m at z = 0 and with the other zeros
exactly at (zn).

Remark. The sequence (zn) is not necessarily formed by distinct points.

Before proceeding to prove Theorem 5.1, we consider the function (entire)

Eν(z) := (1− z)eQν(z), ν ≥ 1; E0(z) := 1− z,

called usually as the Weierstraß factor.
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We first prove three basic properties for Eν(z):

(1) E′ν(z) = −zνeQν(z) for ν ≥ 1:

E′ν(z) = −eQν(z) + (1− z)(1 + z + · · ·+ zν−1)eQν(z)

= eQν(z)(−1 + 1 + · · ·+ zν−1 − z − z2 − · · · − zν) = −zνeQν(z).

(2) Eν(z) = 1 +
∑
j>ν ajz

j with
∑
j>ν |aj | = 1 for ν ≥ 0.

For ν = 0, this is trivial. Since Eν(z) is entire, we may consider its Taylor
expansion around z = 0:

Eν(z) =
∞∑
j=0

ajz
j .

Differentiating, we get

∞∑
j=1

jajz
j−1 = E′ν(z) = −zνeQν(z).

Expanding the right hand around z = 0, we get −zν
∑∞
j=0 βjz

j with βj ≥ 0 for
all j. Therefore a1 = a2 = · · · = aν = 0 and aj ≤ 0 for j > ν, hence |aν | = −aν for
j > ν. Moreover, a0 = Eν(0) = 1 and

0 = Eν(1) = 1 +
∑
j>ν

aj ;

thus ∑
j>ν

aj = −
∑
j>ν

|aj | = −1,

resulting in the assertion.

(3) If |z| ≤ 1, then |Eν(z)− 1| ≤ |z|ν+1, ν ≥ 0. By (2),

|Eν(z)− 1| =
∣∣∣ ∞∑
j=ν+1

ajz
j
∣∣∣ ≤ ∞∑

j=ν+1

|aj ||z|j

= |z|ν+1
∞∑

j=ν+1

|aj ||z|j−(ν+1) ≤ |z|ν+1
∑
j>ν

|aj | = |z|ν+1.

Proof of Theorem 5.1. We consider Eν( zzj ) for j ∈ N. The idea is to determine ν so
that

∏∞
j=1Eν( zzj ) converges absolutely and uniformly for |z| < R, R large enough.

To this end, fix R > 1 and 0 < α < 1. Since limn→∞ |zm| = ∞, we find q such
that |zq| ≤ R

α , while |zq+1| > R
α . Then

∏q
j=1Eν( zzj ) is an entire function as a finite

product of entire functions. Consider now the remainder term

∞∏
j=q+1

Eν

(
z

zj

)
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in the disc |z| ≤ R. Since j > q, |zj | > R
α and so

|z/zj | < α < 1.

Writing

Eν

(
z

zj

)
=
(

1− z

zj

)
e
Qν( zzj ) = 1 + Uj(z),

we proceed to estimate Uj(z). Since j > q, and |z/zj | < 1, (3) above implies

|Uj(z)| =
∣∣∣∣Eν( zzj

)
− 1
∣∣∣∣ ≤ ∣∣∣∣ zzj

∣∣∣∣ν+1

. (5.2)

We now divide our consideration in two cases:

Case I: There exists p ∈ N s.th.
∑∞
j=1 |zj |−p < ∞. In this case, we define

ν := p− 1. From (4.5), we obtain

|Uj(z)| ≤ Rp|zj |−p,

since |z| ≤ R. Therefore,

∞∑
j=1

|Uj(z)| ≤ Rp
∞∑
j=1

|zj |−p <∞

for |z| ≤ R. By Theorem 4.3 and Definition 4.6,

∞∏
j=q+1

(
1 + Uj(z)

)
=

∞∏
j=q+1

Eν

(
z

zj

)

converges absolutely and uniformly.

Case II: For all p ∈ N,
∑∞
j=1 |zj |−p = ∞. In this case, we take ν = j − 1, so ν

depends on j. Then, by (5.2) again

|Uj(z)| ≤
∣∣∣∣ zzj
∣∣∣∣j

provided j > q (which means | zzj | < α < 1) and |z| ≤ R. Since |z/zj | < α < 1, we
have

lim sup
j→∞

j

√∣∣∣∣ zzj
∣∣∣∣j ≤ α < 1,

and therefore, by the root test, which carries over from the (real) analysis word by
word,

∑∞
j=q+1 |Uj(z)| converges. As above, we get that

∏∞
j=q+1Eν( zzj ) converges

absolutely and uniformly for |z| ≤ R. If we now have proved that
∏∞
j=1Eν( zzj ) is

analytic in C, then G(z) is entire and has exactly the desired zeros. Therefore, it
remains to prove
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Theorem 5.2. If
(
fn(z)

)
is a sequence of analytic functions in a domain G and

if there exists
lim
n→∞

fn(z) = f(z) (5.3)

uniformly in closed subdomains of G, then f(z) is analytic and f ′(z) = lim
n→∞

f ′n(z).

Proof. This is a consequence of the Cauchy integral formula. In fact, fix z ∈ G
arbitrarily and let B(z, r) be a disc s.th. B(z, r) ⊂ G. By the Cauchy formula,

fn(z) =
1

2πi

∫
∂B

fn(ζ)
ζ − z

dζ, n ∈ N.

Since the convergence is uniform on ∂B,

|fn(ζ)− f(ζ)| < ε

for n ≥ nε and for all ζ ∈ ∂B. Therefore,∣∣∣∣ 1
2πi

∫
∂B

fn(ζ)
ζ − z

dζ − 1
2πi

∫
∂B

f(ζ)
ζ − z

dζ

∣∣∣∣
≤ 1

2π

∫
∂B

|fn(ζ)− f(ζ)|
|ζ − z|

|dζ| ≤ ε · 2πr
2π · r

= ε,

and so

lim
n→∞

1
2πi

∫
∂B

fn(ζ)
ζ − z

dζ =
1

2πi

∫
∂B

∫
∂B

f(ζ)
ζ − z

dζ.

By (5.3),

f(z) =
1

2πi

∫
∂B

f(ζ)
ζ − z

dζ.

Now, f ′(z) exists, since

1
h

[f(z + h)− f(z)] =
1

2πhi

∫
∂B

(
f(ζ)

ζ − (z + h)
− f(ζ)
ζ − z

)
dζ

=
1

2πi

∫
∂B

f(ζ)
(ζ − z)(ζ − (z + h))

dζ → 1
2πi

∫
∂B

f(ζ)
(ζ − z)2 dζ.

Therefore, f(z) is analytic. Since the limit (5.3) is uniform in ∂B, we get

f ′(z) =
1

2πi

∫
∂B

f(ζ)
(ζ − z)2 dζ =

1
2πi

∫
∂B

(
lim
n→∞

fn(ζ)
) dζ

(ζ − z)2

= lim
n→∞

1
2πi

∫
∂B

fn(ζ)
(ζ − z)2 dζ. �

Theorem 5.3. (Weierstraß product theorem). Let f(z) be entire with a zero of
multiplicity m ∈ N ∪ {0} at z = 0 and the zeros zj 6= 0 s.th. 0 < |z1| ≤ |z2| ≤ · · · ,
possibly including repeated points. Let H(z) denote the Weierstraß product (5.1)
with g(z) ≡ 0. Then there exists an entire function h(z) s.th.

f(z) = H(z)eh(z). (5.4)

Proof. Since f(z) and H(z) have exactly the same zeros, it is clear that f(z)/H(z)
is entire with no zeros. Applying Theorem 4.1 results in (5.4)
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Observe that Theorem 5.1 may be expressed as

Theorem 5.4. Let (zn)n∈N be a sequence the distinct complex numbers having no
finite accumulation points, and let a sequence (kn)n∈N of natural numbers be given.
Then there exists an entire function having roots of multiplicity kn at zn for all
n ∈ N, and nowhere else.
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