
6. Complex interpolation

This section is entirely devoted to prove the following interpolation theorem for
analytic functions:

Theorem 6.1. Let (zn)n∈N be a sequence of distinct points in C having no finite
accumulation points and (ζn)n∈N a sequence of complex numbers, not necessarily
distinct. Then there exists an entire function f(z) such that f(zn) = ζn for all
n ∈ N.

To prove this result, we first need to prove the following Mittag-Leffler theorem.
To this end, recall that Definition 3.1 for a meromorphic function f . By this
definition, the Laurent expansion of f around a ∈ C must be of the form

f(z) =
∞∑

j=−m
aj(z − a)j ,

where m = m(a). The finite part

−1∑
j=−m

aj(z − a)j

is called the singular part of f at z = a.

Theorem 6.2. (Mittag-Leffler). Let (zn)n∈N be a sequence of distinct points in C
having no finite accumulation points, and let

(
Pn(z)

)
n∈N be a sequence of polyno-

mials such that Pn(0) = 0. Then there exists a meromorphic function f(z) having
the singular part

Pn

(
1

z − zn

)
at z = zn, and no other poles in C.

Proof. We may assume that |z1| ≤ |z2| ≤ · · · . Moreover, we assume, temporarily,
that b1 6= 0. Next, let

∑∞
n=1 cn be a convergent series of strictly positive real num-

bers. As Pn(z) is a polynomial, Pn( 1
z−zn ) must be analytic in B(0, |bn|); therefore

we may take its Taylor expansion

Pn

(
1

z − zn

)
=
∞∑
j=0

a
(n)
j zj (6.1)

in B(0, |bn|). By elementary facts of (complex) power series, (6.1) converges abso-
lutely and uniformly in B(0, ρ), where |zn|/2 < ρ < |zn|. Denote now

Qn(z) :=
kn∑
j=0

a
(n)
j zj , (6.2)

where kn has been chosen large enough to satisfy

sup
z∈B(0, |zn|2 )

∣∣∣∣Pn( 1
z − zn

)
−Qn(z)

∣∣∣∣ < cn. (6.3)
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We now proceed to consider the series

∞∑
n=1

(
Pn

(
1

z − zn

)
−Qn(z)

)
. (6.4)

Take now an arbitrary R > 0. Clearly, only those singular parts Pn
(
1/(z − zn)

)
with zn ∈ B(0, R) contribute poles to the sum (6.4). We now break the sum (6.4)
in two parts:

∑
|zn|≤2R

(
Pn

(
1

z − zn

)
−Qn(z)

) ∑
|zn|>2R

(
Pn

(
1

z − zn

)
−Qn(z)

)
. (6.5)

The second (infinite) part has no poles in B(0, R). Moreover, in this part, R <
|zn|/2, and so, by (6.3),

sup
z∈B(0,R)

∣∣∣∣Pn( 1
z − zn

)
−Qn(z)

∣∣∣∣ < cn.

By the standard majorant principle, the infinite part of (6.5) converges absolutely
and uniformly in B(0, R), and therefore defines an analytic function in B(0, R). The
first part in (6.5) is a rational function with prescribed behavior of poles exactly at
z = zn ∈ B(0, R).

Now, since R is arbitrary, the series (6.4) converges locally uniformly in C \⋃∞
n=1{zn}, having prescribed behavior of poles in C except perhaps at z = 0.

Adding one singular part, say P0(1/z), for z = 0, we obtain a function with the
asserted properties.

Proof of Theorem 6.1. By Theorem 5.4, construct an entire function g(z) with
simple zeros only, exactly at each zn. Then g′(zn) 6= 0 for all n ∈ N. By the Mittag-
Leffler theorem, there exists a meromorphic function h(z) with simple poles only
exactly at each zn, with residue ζn/g′(zn) at each zn. Consider f(z) := h(z)g(z),
analytic except perhaps at the points zn. But near z = zn,

g(z) = g′(zn)(z − zn) + · · · = (z − zn)gn(z), gn(zn) = g′(zn)

h(z) =
ζn

g′(zn)
· · · 1

z − zn
+ · · · = hn(z)

z − zn
, hn(zn) =

ζn
g′(zn)

,

where gn(z), hn(z) are analytic at z = zn. Therefore, f(z) = gn(z)hn(z) near
z = zn, and so analytic. Moreover,

f(zn) = gn(zn)hn(zn) = g′(zn) · · · ζn
g′(zn)

= ζn

for each zn. �
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