7. GROWTH OF ENTIRE FUNCTIONS

Definition 7.1. For an entire function f(z),

M (r, f) = max |f(2)|

|z|<r

is the maximum modulus of f.

Remark. By the maximum principle,

M (r, f) = max|f(z)|.

|z|=r

Lemma 7.2. Let P(z) = a2 + -+ + ag, an # 0, be a polynomial. Given € > 0,
there exists r. > 0 s.th.

(1 =g)lan|r™ < |P(2)] < (1 +¢)lan|r"
whenever r = |z| > re.

Proof. Clearly, |P(2)| = |an||[z|" |1 + %2=21 + ... 4+ %0 L Denote

z A

Ap—1 1 ap 1
rn(z) = 1——|—--~—l——0—n-
an 2 Qp 2

Obviously, |r,(z)] < g, if |z| > r. for some € > 0. This means that
(1 =e)lan|r™ < (1= [ra(2))lanlr™ < [1+ ra(2)llan|r"
<

= |P(2)| £ (1 +[ra(2)])]an]r™ < (1 +€)|ay|r™. O

Definition 7.3. For an entire function f(z), the order, resp. lower order, is defined
by

p(f) = limsup log log M(r, f), resp. p(f) := liminf log log M(r, f)
r—00 lOg r r—00 10g r

Remark. By the Liouville theorem, p(f) > 0 and u(f) > 0.
Examples. (1) Show that p(e®) =1 = u(e?).

(2) For a polynomial P(z), show that p(P) = u(P) = 0.
(3) Determine p(cos z).
(4) Consider
z 22 23
f(z)zl—i-l‘z—a-l---- (= cosv/2).

Show that f is entire and determine p(f).

Definition 7.4. Given an entire function f(z), define

A(r, f) := max Re f(2).

|z|=r
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Theorem 7.5. For an entire function f(z) = Z;io a;z7,
la;|r? < max[0,4A(r, f)] — 2Re £(0), (7.1)

for all j € N.

Proof. For r = 0, the assertion is trivial. So, assume r > 0, and denote z = re*¥,
an, = a+1i0,. Then

Re f(re'?) = Re Z(aj +i3;)r? (cos ¢ + i sin @)

J=0

= Re Z(aj +i3;)(cos jo + isin jp)r?
§=0

o
= Z(aj cos jo — B sinjp)r’.
§=0

Multiply now by cosney, resp. by sinnyp, and integrate term by term. This results
in

1 27 )
apr’ = —/ (Re f(re'?)) cos np dep, n >0,
T Jo
1 27 )
—Bpr" = —/ (Re f(re*?)) sin ng de, n > 0,
T Jo
1 27 )
Qo =5 (Re f(rew)) deo, By = 0.
T Jo

Subtracting for n > 0, we obtain

anr" = (o + 10,)r"

1 2m )
= — / (Re f(re*?))(cosngp — isinng) dp
T Jo

— l o i —ine
= /0 (Re f(re'?))e dep,

™

and so

1 27T .
anlr < / IRe £(re')| de,
™ Jo

27
lan|r"™ + 200 < l/ (\ Re f(rew)] + Re f(rew)) de. (7.2)
T Jo

If A(r,f) < 0, then |Re f(re*?)| + Re f(re*¥) = 0, and (7.1) is an immediate
consequence of (7.2). If A(r, f) > 0, then

27
™+ 200 < [ 2000 ) dp = 440 £
0

the proof is now complete. [
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Theorem 7.6. (Hadamard). If f(z) is entire and

L :=liminf A(r, f)r=° < oo

r—00

for some s > 0, then f(z) is a polynomial of degree deg f < s.

Proof. By assumption, there is a sequence r, — oo such that A(r,, f) < (L+1)rs.
If now 5 > s, then _
la;|r), < 4(L+1)r, —2Re f(0)

by Theorem 7.5. Therefore

AL+1)  2Ref(0)

| —S
i rh

laj| <

— 0 as r, — 00.

So, a; =0forall j >s. O

Theorem 7.7. Let f(z) be entire with no zeros such that u(f) < co. Then f(z) =
e’ for a polynomial

P(z) =amz™+---+ag,  an#0,

such that m = p(f) = p(f).

Proof. By Theorem 4.1, f(z) = e9(*) for an entire function g(z). Now, given £ > 0,
there is a sequence r,, — oo such that for any z with |z| = 7,

eReg(z) — ‘eg(z)| — |f(2’)| < erg(f)Jre' (73)
From the definition of the lower order,

lim inf loglog M(r, f)
T—00 logr

= u(f),

it follows that
loglog M (r, ) < (u(f) +¢) logr,

and so e
M(r, f)y<e™ .

By (7.3), Reg(z) < riDTE for all |z| = 7y, hence
A(rn, g) < rithte,

By Theorem 7.6,
lim inf A(r, g)r~ (D) <1 < oo,

T—00

and so, g must be a polynomial of degree < u(f) + ¢, hence < u(f).

We still have to prove that u(f) = p(f) = m for f(z) = P, if P(z) =
amz™ + -+ ag, am # 0.

To this end, we first observe, by Lemma 7.2, that

1£(2)] = [eP@)] = ReP() < (PRI < (2lamlr™
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for every |z| = r, r sufficiently large. Therefore,

log M(r, f) < 2|am|r™,
loglog M(r, f) < mlogr + log(2|am|)

and so

1 1 M 1 1 9 m
p(f) = limsup —2-2 (r.J) < limsup — ogr +log(2lam|) _ m
r—00 logr oo log 7

So,
p(f) <m =degP < u(f) < p(f),

and we are done. O

Now, let f(z) be an entire function of finite order p < 4+00. By the definition of
the order, this means that for some r,

log log M (r, f)
logr

<p-+e, for all r > r.,
hence
loglog M(r, f) < (p+¢)logr = logrf™e

and so
lf(2)] < M(r, f) < e for all |z| <. (7.4)

Lemma 7.8. Defining
a:=inf{ A\ >0 | M(r, f) < e for all v suff. large },

the order of f satisfies p(f) = a.

Proof. By (7.4), a < p(f) +¢ for all e > 0, so @ < p(f). On the other hand, given
any A > 0 such that the condition is satisfied, we get

log log e

log log M
p(f) = limsup oglog M(r, /) < lim sup
r—00 10g7“ 7—00 logr

=

and so p(f) <a. O

Theorem 7.9. Let fi(z), f2(2) be two entire functions. Then

(1) p(f1 + f2) < max(p(f1), p(f2)),
(2) p(f1f2) < max(p(f1),p(f2))-
Moreover, if p(fi1) < p(f2), then

(3) p(f1+ f2) = p(f2),

Proof. (1) Assume therefore that p(f;) = p(f2) = p. By Lemma 7.8, for r suffi-
ciently large,
T.ﬂ+6

M(r, f1) <e" M(r, f2) <e
30
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By elementary estimates, for r sufficiently large,

M(r.fi 4 f2) = max | (1) + F(z2)] < max |(z2)] + max| £ ()

rP1te rP2te max(py,p2)+e

= M(r, f1) + M(r, f2) <e

rmax(p1,p2)+2e

+e < 2¢e”

<e

By Lemma 7.8 again, p(f1 + f2) < p+ 2¢ and so p(f1 + f2) < p.

(2) Similarly, for p1 = p(f1), p2 = p(f2),

M(r, f1f2) = |Z|i>§|f1(2)f2(2)| < (max |f1(Z)|)(m|i>§|f2(Z)|)

|z|=r |z

rP1te rp2te pmax(p1,p2)+e
- e <e

= M(r, f1)M(r, f2) < e

and we obtain p(f1f2) < max(p(f1),p(f2)) by taking logarithms twice.

(3) We now assume p(f1) < p(f2) = p. The inequality in (1) is immediate:

rP(f1)+e rPte rPpt2e
+e

M(r, f1 + fa) < M(r, f1) + M(r, f2) <e

Therefore, it remains to prove that for any £ > 0,

p(fl +f2) Z p—E¢.
Now, we again have M(r, f1) < ot
definition of lim sup,

M(T’, f2> > éﬂﬁie

for all r sufficiently large and, by the

for a sequence (r,) such that r, — 0o as n — oo. Now, given r,, since fo is
continuous and |z| = r, is compact, we find z, such that |z,| = r, and that

|f(zn)| = M(ry, f2) > exp(rf=¢) by (7.5). Therefore

+
erfL(h) 6.

(4 ) )l = [f1(zn) + fo(zn)] 2 |fa(zn)] = [frlza)] 2 €7 =
To estimate further, take € > 0 so that p —e > p(f1) +& > 0. Then

R (e R

as n — o0, since p(f1) — p < 0. Therefore,

—€ (f1)+e
M(rp, f1 + f2) 2 [(fi + f2)(zn)] > e~ —em
= erzis(l — eTfL(fl)ﬁ—’"ﬁfg) > %eh’fs

p(f1)+e_,.p—¢
n

for n sufficiently large, since e ™ —0asn—oo. U
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Remark. If p(f1) < p(f2), then p(f1f2) = p(f2) also holds. This can be proved
with some more knowledge on meromorphic functions. In fact, since 1/f; is mero-
morphic and non-entire in general, and so we cannot directly apply the above
reasoning.

Considering an entire function f with the Taylor expansion

f(z) =) a2,
=0

it is possible to determine its order by the coefficients a;.

Theorem 7.10. Defining

0, lf a; = 0
bj = jloglj ’ 'Lf aj 7§ O,

the order p(f) of f is determined by

p(f) = limsupb;.

J—00

Proof. Denote p := limsup,_, ., b;.

1) We first prove that p(f) > u. If u = 0, this inequality is trivial. So, we may
assume p > 0. Recall first Cauchy inequalities:

11 F©Qd¢) _ 1 2 F©Q)

27
<M/ T_jdgp:M, for all j € NU {0}.
0

- 21 rJ

Take now o € R such that 0 < o < u, and proceed to prove that p(f) > o. Since
o is arbitrary, this means that p(f) > p. By the definition of o and p, there exist
infinitely many natural numbers j such that

. . 1
jlogj > Ulogm = —olog|a;|
j

I .
log |aj| > ——jlogj.

o

By the Cauchy inequalities,
; . . 1. .
log M(r, f) > log(r’|a;|) = jlogr +logla;| > jlogr — —jlog j.
o

The above j:s will be used to determine a sequence of r-values as follows:

1
T = (ej)V/7, hence j = grq

-
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Then

o1 R 1. 1
log M(rj, f) = j - —log(ej) — —jlogj = —j = —r]
o o o oe
1
loglog M (r;, f) > ologr; + log —
oe
—

loglog M(r, f) loglog M (r;, f)

o(f) = limsup > lim sup
r—00 log r 7 —00 log 7
ologr; +log =
> lim sup &1y e _ 0.
T5—00 log T‘j

2) To prove that o(f) < p, we may now assume that y < +o0o. Fix € > 0. Then,
for all sufficiently large j, such that a; # 0,

1
OSI — <pu+te
8 Taj]
Therefore,
1
logj <log — = —log|a;|
pte || ’
and so ‘
J . o _d
loglai| < — logj =1lo nte ),
gla;| < pe s g(j~ )

By monotonicity of the logarithm,

laj| < G/ e

Now,

M(r, f) = max

[e%e)

§ 5

CLJZ
Jj=0

L _J j L ]

:|a0|—|— g i ntepd g J pte

0#j<(2r)Hte Jj=(2r)mte
=851 +5+ ’0,0‘.

(@) o0 .
< laol + Y lajlr? < lao| + Y j w1’
Jj=1 j=1

Since (2r)#T¢ < j in the sum S, we get

2r§jﬁ,

L1
hence rj~ wte <

and so

N[ =

= Y wEis Y () s> () <2
> (e > (2t =1
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For S, we obtain

S Y ydes Y eert

0 <(2r)p+e 0 <(2r)n+e
w .
<pEOTENT TR = ke K < oo,
=1
In fact, since
e < L
J Tt s
;2

for all 5 sufficiently large, the sum Z;‘;l 7 — it converges. Therefore,

loglog M (r, f) loglog(S1 + S2 + |ao|)

p(f) = limsup < limsup

r—00 logr r—00 log r
i loglogS1 .. log log(Kr(QT)wE)

= limsup ————— < limsup
00 logr 00 log r

< pu+ 2

and so
p(f) <p O

Example. Consider
z = L
f(Z) =e€ :Zﬁzju
=0
and recall the Stirling formula

lim (j1/v/2mje947)) = 1.

J—00

Now,
1 _log(j) jlogj—j+logy2mj
bj  jlogj jlogj

and so p(e*) = limsup;_,,, b; = 1, as already known.

Definition 7.11. For an entire function f(z) of order p such that 0 < p < oo, its
type 7 is defined by
log M (r, f)

T=T := lim sup ———=~%.
(f) = lim sup ——72

The next lemma is a counterpart to Lemma 7.8:

Lemma 7.12. Define
B:=inf{K >0|M(r f)<eE™ for all r sufficiently large},

where f is entire and p = p(f), p € (0,+00). Then 3 = 7(f).

Proof. Observe that we understand, as usually, that inf & = +o0.
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1) If 7(f) = +o0, then for all K > 0, there is a sequence r,, — oo such that
log M (rn, ) > Kr}}

and so
M(rna f) > eXp(KTfL)'

Therefore, there is no K > 0 such that
M(r, f) < e r
for all r sufficiently large, implying that
B = +o0.

Conversely, if § = 400, then { K > 0| M(r, f) < X" for all 7 sufficiently large }
= @. So, for all K > 0, we find a sequence r, — 400 such that M(r,, f) >
exp(KrP). Therefore 7(f) = 4o0.

2) Take now K (> ) such that M(r, f) < eX™ for all r sufficiently large. But

then
log M(r, f) < KrP

=K
rP rP
for all r sufficiently large. This results in
log M
T(f) = limsupog—(r’f) <K.

r—00 rP

Since K > [ is arbitrary, we conclude that 7(f) < .

3) To prove that 7(f) > 3, observe, by the definition of 7(f), that given € > 0,

log M (r, f)

o =T(f)+e

for all r sufficiently large. Then
log M(r, f) < (7(f) +¢)r”

and so
M(r, f) < exp((r(f) +¢&)r”).
This implies

hence
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Lemma 7.13. Let f(z) be analytic in a neighborhood of z = 0 with the Taylor
expansion

flz) =) a7, (7.6)

§j=0
Suppose there exist X > 0, u > 0 and a natural number N = N(pu, \) > 0 such that
jaj| < (epA/j) " (7.7)

for all 5 > N. Then the Taylor expansion converges in the whole complex plane,
and therefore f(z) is entire. Moreover, for every € > 0 there exists R = R(g) > 0
such that

]\4(7,,7 f) S 6()\+€)rﬂ
for all r > R.

Proof. By (7.7),

_ by /p
</|aj|§ (%) —0 as j — oo.

Therefore, the radius of convergence R for the power series (7.8) is R = +00, since

Therefore, (7.6) determines an entire function.
To prepare the subsequent estimate for M(r, f), observe first (exercise!) that

the maximum of
(e,u)\ ) x/p N
_ r
T

for x > 0 will be achieved as © = uAr#. Therefore,

A xz/p u
(%> P < e,
x

Moreover, if j > N(r) := max(N, 2*euArt), then

, : A\
{/lazlr? < (%) r<sj,

and so

- 1
laj|r! < % for j > N(r).
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For the maximum modulus of f, we now obtain, for » > 1,

|r£1|a)§ Zajz]‘ < Z |a|r?
N(T) o0 )
- ZI@;W + > ol D el
j=N+1 J=N(r)+1
1
- N N pd —_
(JZO a1 ) ) N—|—1I£?§(N(r) sl + ]:Zl 27

<N (i a5]) + (N (r) = N) max(la,ir?) + 1

§=0
< 7°N<i |aj]> + (N(r) — N) max ((e,z;_})ﬂ/ﬂrj) +1
i=0 -

< 14 brN + max(0, 2#eprrt — N)er" < O+,

provided r is sufficiently large. [

Theorem 7.14. Let f(z) = Z;io ajz? be an entire function of finite order p > 0
and of type T = 7(f). Then

1 .
T = — limsup(j|a;|*/7).
e j—o00

Proof. Denoting v := lim supj_)oo(j|aj|”/j), we have to prove that 7 = 2.

1) We first prove that 7 < v/ep. If v = +o00, this is trivial. Therefore, we may
assume that (0 <)v < +o0o0. Take any K > v/ep, i.e. epK > v. By the definition
of v,

jlaj 1”7 < epK

for j sufficiently large. Hence,

By Lemma 7.13, for each € > 0, there exists R = R(e) > 0 such that
M(T,f) < 6(K+E)rﬂ

whenever r > R(e). by Definition 7.11, 7 < K + . Since ¢ > 0 is arbitrary, 7 < K
and since K > v/ep is arbitrary,

(0 <) <v/ep. (7.8)
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2) To prove the reverse inequality, we first observe that v = 0 implies 7 = 0 by
(7.8), so we may now assume that 0 < v < +oo. Take 3 such that 0 < § < v. By
the definition of v again, there is a sequence of j:s (— 00) such that

jlaj|P7 >

and so .
laj| > (B/5)7.

Corresponding to these j:s define a sequence r; by
(rj)f =je/B — as j — oo. (7.9)

By the Cauchy inequalities |a;| < w, we obtain by (7.9)

. ile s \d/p o )
M(r, ) = |aj|(r;)’ = (é) (‘E) — el/p &) e e(ri)?

J s
Therefore,
log M log M (r; 1 )P
T = limsupog—(r’f) > lim sup M > limsup—é (r5) = ﬁ
700 (A8 j—o0 T j—oe pe(ri)P  pe

Since § < v is arbitrary, this implies 7 > v/pe. O
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