
7. Growth of entire functions

Definition 7.1. For an entire function f(z),

M(r, f) = max
|z|≤r

|f(z)|

is the maximum modulus of f .

Remark. By the maximum principle,

M(r, f) = max
|z|=r

|f(z)|.

Lemma 7.2. Let P (z) = anz
n + · · · + a0, an 6= 0, be a polynomial. Given ε > 0,

there exists rε > 0 s.th.

(1− ε)|an|rn ≤ |P (z)| ≤ (1 + ε)|an|rn

whenever r = |z| > rε.

Proof. Clearly, |P (z)| = |an||z|n
∣∣∣1 + an−1

an
1
z + · · ·+ a0

an
1
zn

∣∣∣. Denote

rn(z) =
an−1

an

1
z

+ · · ·+ a0

an

1
zn
.

Obviously, |rn(z)| < ε, if |z| > rε for some ε > 0. This means that

(1− ε)|an|rn ≤
(
1− |rn(z)|

)
|an|rn ≤ |1 + rn(z)||an|rn

= |P (z)| ≤
(
1 + |rn(z)|

)
|an|rn ≤ (1 + ε)|an|rn. �

Definition 7.3. For an entire function f(z), the order, resp. lower order, is defined
by

ρ(f) := lim sup
r→∞

log logM(r, f)
log r

, resp. µ(f) := lim inf
r→∞

log logM(r, f)
log r

.

Remark. By the Liouville theorem, ρ(f) ≥ 0 and µ(f) ≥ 0.

Examples. (1) Show that ρ(ez) = 1 = µ(ez).
(2) For a polynomial P (z), show that ρ(P ) = µ(P ) = 0.
(3) Determine ρ(cos z).
(4) Consider

f(z) = 1− z

2!
+
z2

4!
− z3

6!
+ · · · (= cos

√
z).

Show that f is entire and determine ρ(f).

Definition 7.4. Given an entire function f(z), define

A(r, f) := max
|z|=r

Re f(z).
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Theorem 7.5. For an entire function f(z) =
∑∞
j=0 ajz

j,

|aj |rj ≤ max[0, 4A(r, f)]− 2 Re f(0), (7.1)

for all j ∈ N.

Proof. For r = 0, the assertion is trivial. So, assume r > 0, and denote z = reiϕ,
an = α+ iβn. Then

Re f(reiϕ) = Re
∞∑
j=0

(αj + iβj)rj(cosϕ+ i sinϕ)j

= Re
∞∑
j=0

(αj + iβj)(cos jϕ+ i sin jϕ)rj

=
∞∑
j=0

(αj cos jϕ− βj sin jϕ)rj .

Multiply now by cosnϕ, resp. by sinnϕ, and integrate term by term. This results
in

αnr
n =

1
π

∫ 2π

0

(
Re f(reiϕ)

)
cosnϕdϕ, n > 0,

−βnrn =
1
π

∫ 2π

0

(
Re f(reiϕ)

)
sinnϕdϕ, n > 0,

α0 =
1

2π

∫ 2π

0

(
Re f(reiϕ)

)
dϕ, β0 = 0.

Subtracting for n > 0, we obtain

anr
n = (αn + iβn)rn

=
1
π

∫ 2π

0

(
Re f(reiϕ)

)
(cosnϕ− i sinnϕ) dϕ

=
1
π

∫ 2π

0

(
Re f(reiϕ)

)
e−inϕ dϕ,

and so

|an|rn ≤
1
π

∫ 2π

0
|Re f(reiϕ)| dϕ,

|an|rn + 2α0 ≤
1
π

∫ 2π

0

(
|Re f(reiϕ)|+ Re f(reiϕ)

)
dϕ. (7.2)

If A(r, f) < 0, then |Re f(reiϕ)| + Re f(reiϕ) = 0, and (7.1) is an immediate
consequence of (7.2). If A(r, f) ≥ 0, then

|an|rn + 2α0 ≤
1
π

∫ 2π

0
2A(r, f) dϕ = 4A(r, f);

the proof is now complete. �

28



Theorem 7.6. (Hadamard). If f(z) is entire and

L := lim inf
r→∞

A(r, f)r−s <∞

for some s ≥ 0, then f(z) is a polynomial of degree deg f ≤ s.

Proof. By assumption, there is a sequence rn →∞ such that A(rn, f) ≤ (L+ 1)rsn.
If now j > s, then

|aj |rjn ≤ 4(L+ 1)rsn − 2 Re f(0)

by Theorem 7.5. Therefore

|aj | ≤
4(L+ 1)
rj−sn

− 2 Re f(0)
rjn

→ 0 as rn →∞.

So, aj = 0 for all j > s. �

Theorem 7.7. Let f(z) be entire with no zeros such that µ(f) <∞. Then f(z) =
eP (z) for a polynomial

P (z) = amz
m + · · ·+ a0, an 6= 0,

such that m = µ(f) = ρ(f).

Proof. By Theorem 4.1, f(z) = eg(z) for an entire function g(z). Now, given ε > 0,
there is a sequence rn →∞ such that for any z with |z| = rn,

eRe g(z) = |eg(z)| = |f(z)| ≤ er
µ(f)+ε
n . (7.3)

From the definition of the lower order,

lim inf
r→∞

log logM(r, f)
log r

= µ(f),

it follows that
log logM(r, f) ≤

(
µ(f) + ε

)
log r,

and so
M(r, f) ≤ er

µ(f)+ε
.

By (7.3), Re g(z) ≤ rµ(f)+ε
n for all |z| = rn, hence

A(rn, g) ≤ rµ(f)+ε
n .

By Theorem 7.6,
lim inf
r→∞

A(r, g)r−(µ(f)+ε) ≤ 1 <∞,

and so, g must be a polynomial of degree ≤ µ(f) + ε, hence ≤ µ(f).
We still have to prove that µ(f) = ρ(f) = m for f(z) = eP (z), if P (z) =

amz
m + · · ·+ a0, am 6= 0.

To this end, we first observe, by Lemma 7.2, that

|f(z)| = |eP (z)| = eReP (z) ≤ e|P (z)| ≤ e2|am|rm
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for every |z| = r, r sufficiently large. Therefore,

logM(r, f) ≤ 2|am|rm,
log logM(r, f) ≤ m log r + log(2|am|)

and so

ρ(f) = lim sup
r→∞

log logM(r, f)
log r

≤ lim sup
r→∞

m log r + log(2|am|)
log r

= m.

So,
ρ(f) ≤ m = degP ≤ µ(f) ≤ ρ(f),

and we are done. �

Now, let f(z) be an entire function of finite order ρ < +∞. By the definition of
the order, this means that for some rε,

log logM(r, f)
log r

< ρ+ ε, for all r ≥ rε,

hence
log logM(r, f) < (ρ+ ε) log r = log rρ+ε

and so
|f(z)| ≤M(r, f) ≤ er

ρ+ε
for all |z| ≤ r. (7.4)

Lemma 7.8. Defining

α := inf{λ > 0 |M(r, f) ≤ er
λ

for all r suff. large },

the order of f satisfies ρ(f) = α.

Proof. By (7.4), α ≤ ρ(f) + ε for all ε > 0, so α ≤ ρ(f). On the other hand, given
any λ > 0 such that the condition is satisfied, we get

ρ(f) = lim sup
r→∞

log logM(r, f)
log r

≤ lim sup
r→∞

log log er
λ

log r
= λ

and so ρ(f) ≤ α. �

Theorem 7.9. Let f1(z), f2(z) be two entire functions. Then
(1) ρ(f1 + f2) ≤ max

(
ρ(f1), ρ(f2)

)
,

(2) ρ(f1f2) ≤ max
(
ρ(f1), ρ(f2)

)
.

Moreover, if ρ(f1) < ρ(f2), then
(3) ρ(f1 + f2) = ρ(f2),

Proof. (1) Assume therefore that ρ(f1) = ρ(f2) = ρ. By Lemma 7.8, for r suffi-
ciently large,

M(r, f1) ≤ er
ρ+ε

, M(r, f2) ≤ er
ρ+ε

.
30



By elementary estimates, for r sufficiently large,

M(r, f1 + f2) = max
|z|=r

|f(z1) + f(z2)| ≤ max
|z|=r

|f(z1)|+ max
|z|=r

|f(z2)|

= M(r, f1) +M(r, f2) ≤ er
ρ1+ε

+ er
ρ2+ε
≤ 2er

max(ρ1,ρ2)+ε

≤ er
max(ρ1,ρ2)+2ε

.

By Lemma 7.8 again, ρ(f1 + f2) ≤ ρ+ 2ε and so ρ(f1 + f2) ≤ ρ.

(2) Similarly, for ρ1 = ρ(f1), ρ2 = ρ(f2),

M(r, f1f2) = max
|z|=r

|f1(z)f2(z)| ≤
(
max
|z|=r

|f1(z)|
)(

max
|z|=r

|f2(z)|
)

= M(r, f1)M(r, f2) ≤ er
ρ1+ε
· er

ρ2+ε
≤ er

max(ρ1,ρ2)+ε

and we obtain ρ(f1f2) ≤ max
(
ρ(f1), ρ(f2)

)
by taking logarithms twice.

(3) We now assume ρ(f1) < ρ(f2) = ρ. The inequality in (1) is immediate:

M(r, f1 + f2) ≤M(r, f1) +M(r, f2) ≤ er
ρ(f1)+ε

+ er
ρ+ε
≤ 2er

ρ+ε
≤ er

ρ+2ε
.

Therefore, it remains to prove that for any ε > 0,

ρ(f1 + f2) ≥ ρ− ε.

Now, we again have M(r, f1) ≤ er
ρ(f1)+ε

for all r sufficiently large and, by the
definition of lim sup,

M(r, f2) ≥ er
ρ−ε
n (7.5)

for a sequence (rn) such that rn → ∞ as n → ∞. Now, given rn, since f2 is
continuous and |z| = rn is compact, we find zn such that |zn| = rn and that
|f(zn)| = M(rn, f2) ≥ exp(rρ−εn ) by (7.5). Therefore

|(f1 + f2)(zn)| = |f1(zn) + f2(zn)| ≥ |f2(zn)| − |f1(zn)| ≥ er
ρ−ε
n − er

ρ(f1)+ε
n .

To estimate further, take ε > 0 so that ρ− ε > ρ(f1) + ε > 0. Then

rρ(f1)+ε
n − rρ−εn = rρ−εn (rρ(f1)−ρ+2ε

n − 1)→ −∞

as n→∞, since ρ(f1)− ρ < 0. Therefore,

M(rn, f1 + f2) ≥ |(f1 + f2)(zn)| ≥ er
ρ−ε
n − er

ρ(f1)+ε
n

= er
ρ−ε
n (1− er

ρ(f1)+ε
n −rρ−εn ) ≥ 1

2e
rρ−εn

for n sufficiently large, since er
ρ(f1)+ε
n −rρ−εn → 0 as n→∞. �
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Remark. If ρ(f1) < ρ(f2), then ρ(f1f2) = ρ(f2) also holds. This can be proved
with some more knowledge on meromorphic functions. In fact, since 1/f1 is mero-
morphic and non-entire in general, and so we cannot directly apply the above
reasoning.

Considering an entire function f with the Taylor expansion

f(z) =
∞∑
j=0

ajz
j ,

it is possible to determine its order by the coefficients aj .

Theorem 7.10. Defining

bj :=

{
0, if aj = 0
j log j

log 1
|aj |

, if aj 6= 0,

the order ρ(f) of f is determined by

ρ(f) = lim sup
j→∞

bj .

Proof. Denote µ := lim supj→∞ bj .

1) We first prove that ρ(f) ≥ µ. If µ = 0, this inequality is trivial. So, we may
assume µ > 0. Recall first Cauchy inequalities:

|aj | =
∣∣∣ 1
2πi

∫
|ζ|=r

f(ζ) dζ
ζj+1

∣∣∣ ≤ 1
2π

∫ 2π

0

|f(ζ)|
|ζ|j+1 r dϕ

≤ M(r, f)
2π

∫ 2π

0
r−j dϕ =

M(r, f)
rj

, for all j ∈ N ∪ {0}.

Take now σ ∈ R such that 0 < σ < µ, and proceed to prove that ρ(f) ≥ σ. Since
σ is arbitrary, this means that ρ(f) ≥ µ. By the definition of σ and µ, there exist
infinitely many natural numbers j such that

j log j ≥ σ log
1
|aj |

= −σ log |aj |

=⇒
log |aj | ≥ −

1
σ
j log j.

By the Cauchy inequalities,

logM(r, f) ≥ log(rj |aj |) = j log r + log |aj | ≥ j log r − 1
σ
j log j.

The above j:s will be used to determine a sequence of r-values as follows:

rj := (ej)1/σ, hence j =
1
e
rσj .
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Then
logM(rj , f) ≥ j · 1

σ
log(ej)− 1

σ
j log j =

1
σ
j =

1
σe
rσj

=⇒
log logM(rj , f) ≥ σ log rj + log

1
σe

=⇒

σ(f) = lim sup
r→∞

log logM(r, f)
log r

≥ lim sup
rj→∞

log logM(rj , f)
log rj

≥ lim sup
rj→∞

σ log rj + log 1
σe

log rj
= σ.

2) To prove that σ(f) ≤ µ, we may now assume that µ < +∞. Fix ε > 0. Then,
for all sufficiently large j, such that aj 6= 0,

0 ≤ j log j
log 1
|aj |
≤ µ+ ε.

Therefore,
j

µ+ ε
log j ≤ log

1
|aj |

= − log |aj |

and so
log |aj | ≤ −

j

µ+ ε
log j = log(j−

j
µ+ε ).

By monotonicity of the logarithm,

|aj | ≤ j−j/(µ+ε).

Now,

M(r, f) = max
|z|=r

∣∣∣ ∞∑
j=0

ajz
j
∣∣∣ ≤ |a0|+

∞∑
j=1

|aj |rj ≤ |a0|+
∞∑
j=1

j−
j

µ+ε rj

= |a0|+
∑

06=j<(2r)µ+ε

j−
j

µ+ε rj +
∑

j≥(2r)µ+ε

j−
j

µ+ε rj

= S1 + S2 + |a0|.

Since (2r)µ+ε ≤ j in the sum S2, we get

2r ≤ j
1

µ+ε ,

hence rj−
1

µ+ε ≤ 1
2 and so

S2 =
∑

j≥(2r)µ+ε

(rj−
1

µ+ε )j ≤
∑

j≥(2r)µ+ε

(1
2

)j ≤ ∞∑
j=1

(1
2

)j ≤ 2.
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For S1, we obtain

S1 =
∑

0 6=j<(2r)µ+ε

j−
j

µ+ε rj ≤
∑

06=j<(2r)µ+ε

j−
j

µ+ε r(2r)µ+ε

≤ r(2r)µ+ε
∞∑
j=1

j−
j

µ+ε = Kr(2r)µ+ε
, K <∞.

In fact, since

j−
j

µ+ε ≤ 1
j2

for all j sufficiently large, the sum
∑∞
j=1 j

− j
µ+ε converges. Therefore,

ρ(f) = lim sup
r→∞

log logM(r, f)
log r

≤ lim sup
r→∞

log log(S1 + S2 + |a0|)
log r

= lim sup
r→∞

log logS1

log r
≤ lim sup

r→∞

log log(Kr(2r)µ+ε
)

log r
≤ µ+ 2ε

and so
ρ(f) ≤ µ. �

Example. Consider

f(z) = ez =
∞∑
j=0

1
j!
zj ,

and recall the Stirling formula

lim
j→∞

(
j!/
√

2πje−jjj)
)

= 1.

Now,
1
bj

=
log(j!)
j log j

∼ j log j − j + log
√

2πj
j log j

→ 1

and so ρ(ez) = lim supj→∞ bj = 1, as already known.

Definition 7.11. For an entire function f(z) of order ρ such that 0 < ρ <∞, its
type τ is defined by

τ = τ(f) := lim sup
r→∞

logM(r, f)
rρ

.

The next lemma is a counterpart to Lemma 7.8:

Lemma 7.12. Define

β := inf{K > 0 |M(r, f) ≤ eKr
ρ

for all r sufficiently large },

where f is entire and ρ = ρ(f), ρ ∈ (0,+∞). Then β = τ(f).

Proof. Observe that we understand, as usually, that inf Φ = +∞.
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1) If τ(f) = +∞, then for all K > 0, there is a sequence rn →∞ such that

logM(rn, f) ≥ Krρn

and so
M(rn, f) ≥ exp(Krρn).

Therefore, there is no K > 0 such that

M(r, f) ≤ eKr
ρ

for all r sufficiently large, implying that

β = +∞.

Conversely, if β = +∞, then {K > 0 | M(r, f) ≤ eKr
ρ

for all r sufficiently large }
= Φ. So, for all K > 0, we find a sequence rn → +∞ such that M(rn, f) >
exp(Krρn). Therefore τ(f) = +∞.

2) Take now K (≥ β) such that M(r, f) ≤ eKr
ρ

for all r sufficiently large. But
then

logM(r, f)
rρ

≤ Krρ

rρ
= K

for all r sufficiently large. This results in

τ(f) = lim sup
r→∞

logM(r, f)
rρ

≤ K.

Since K ≥ β is arbitrary, we conclude that τ(f) ≤ β.

3) To prove that τ(f) ≥ β, observe, by the definition of τ(f), that given ε > 0,

logM(r, f)
rρ

≤ τ(f) + ε

for all r sufficiently large. Then

logM(r, f) ≤
(
τ(f) + ε

)
rρ

and so
M(r, f) ≤ exp

((
τ(f) + ε

)
rρ
)
.

This implies
β ≤ τ(f) + ε,

hence
β ≤ τ(f). �
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Lemma 7.13. Let f(z) be analytic in a neighborhood of z = 0 with the Taylor
expansion

f(z) =
∞∑
j=0

ajz
j . (7.6)

Suppose there exist λ > 0, µ > 0 and a natural number N = N(µ, λ) > 0 such that

|aj | ≤ (eµλ/j)j/µ (7.7)

for all j > N . Then the Taylor expansion converges in the whole complex plane,
and therefore f(z) is entire. Moreover, for every ε > 0 there exists R = R(ε) > 0
such that

M(r, f) ≤ e(λ+ε)rµ

for all r > R.

Proof. By (7.7),

j

√
|aj | ≤

(
eµλ

j

)1/µ

→ 0 as j →∞.

Therefore, the radius of convergence R for the power series (7.8) is R = +∞, since

1
R

= lim sup
j→∞

j

√
|aj | = 0.

Therefore, (7.6) determines an entire function.
To prepare the subsequent estimate for M(r, f), observe first (exercise!) that

the maximum of (
eµλ

x

)x/µ
rx

for x ≥ 0 will be achieved as x = µλrµ. Therefore,

(
eµλ

x

)x/µ
rx ≤ eλr

µ

.

Moreover, if j > N(r) := max(N, 2µeµλrµ), then

j

√
|aj |rj <

(
eµλ

j

)1/µ

r < 1
2 ,

and so

|aj |rj <
1
2j

for j > N(r).
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For the maximum modulus of f , we now obtain, for r > 1,

M(r, f) = max
|z|=r

∣∣∣ ∞∑
j=0

ajz
j
∣∣∣ ≤ ∞∑

j=0

|aj |rj

=
N∑
j=0

|aj |rj +
N(r)∑
j=N+1

|aj |rj +
∞∑

j=N(r)+1

|aj |rj

≤ rN
( N∑
j=0

|aj |
)

+
(
N(r)−N

)
max

N+1≤j≤N(r)
|aj |rj +

∞∑
j=1

1
2j

≤ rN
( N∑
j=0

|aj |
)

+
(
N(r)−N

)
max
j>N

(|aj |rj) + 1

≤ rN
( N∑
j=0

|aj |︸ ︷︷ ︸
=:b

)
+
(
N(r)−N

)
max
j≥N

((
eµλ

j

)j/µ
rj

)
+ 1

≤ 1 + brN + max(0, 2µeµλrµ −N)eλr
µ

≤ e(λ+ε)rµ ,

provided r is sufficiently large. �

Theorem 7.14. Let f(z) =
∑∞
j=0 ajz

j be an entire function of finite order ρ > 0
and of type τ = τ(f). Then

τ =
1
eρ

lim sup
j→∞

(j|aj |ρ/j).

Proof. Denoting ν := lim supj→∞(j|aj |ρ/j), we have to prove that τ = ν
eρ .

1) We first prove that τ ≤ ν/eρ. If ν = +∞, this is trivial. Therefore, we may
assume that (0 ≤)ν < +∞. Take any K > ν/eρ, i.e. eρK > ν. By the definition
of ν,

j|aj |ρ/j < eρK

for j sufficiently large. Hence,

|aj | <
(
eρK

j

)j/ρ
.

By Lemma 7.13, for each ε > 0, there exists R = R(ε) > 0 such that

M(r, f) ≤ e(K+ε)rρ

whenever r > R(ε). by Definition 7.11, τ ≤ K + ε. Since ε > 0 is arbitrary, τ ≤ K
and since K > ν/eρ is arbitrary,

(0 ≤)τ ≤ ν/eρ. (7.8)
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2) To prove the reverse inequality, we first observe that ν = 0 implies τ = 0 by
(7.8), so we may now assume that 0 < ν ≤ +∞. Take β such that 0 < β < ν. By
the definition of ν again, there is a sequence of j:s (→∞) such that

j|aj |ρ/j ≥ β

and so
|aj | ≥ (β/j)j/ρ.

Corresponding to these j:s define a sequence rj by

(rj)ρ = je/β →∞ as j →∞. (7.9)

By the Cauchy inequalities |aj | ≤ M(r,f)
rj , we obtain by (7.9)

M(rj , f) ≥ |aj |(rj)j ≥
(
β

j

)j/ρ(
je

β

)j/ρ
= ej/ρ

(∗)
= e

1
ρ
β
e (rj)ρ .

Therefore,

τ = lim sup
r→∞

logM(r, f)
rρ

≥ lim sup
j→∞

logM(rj , f)
rρj

≥ lim sup
j→∞

1
ρ

β

e

(rj)ρ

(rj)ρ
=

β

ρe
.

Since β < ν is arbitrary, this implies τ ≥ ν/ρe. �
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