
8. Phragmén-Lindelöf theorems

Theorem 8.1. Suppose f(z) is analytic inside a sectorial domain of opening π/α,
where α > 1, see the adjacent figure. Moreover, assume that f(z) is continuous on
the closure of the sectorial domain. If |f(z)| ≤ M on the boundary of the domain
and

|f(z)| ≤ Ke|z|
β

inside of the domain for some constant β < α, then |f(z)| ≤ M inside of the
domain.

Proof. By a rotation, we may assume that the domain in question is { z 6= 0 |
| arg z| < π/2α }. Choose now ε > 0 and γ such that β < γ < α, and consider

F (z) := e−εz
γ

f(z),

where zγ = (reiϕ)γ = rγeiγϕ.
Since

Re(zγ) = Re(rγeiγϕ) = Re
(
rγ
(
cos(γϕ) + i sin(γϕ)

))
= rγ cos(γϕ),

we observe that

|F (z)| = |F (reiϕ) = eRe(−εzγ)|f(z)| = e−εr
γ cos(γϕ)|f(z)|.

Since |γϕ| < γπ
2α < π

2 for the closed sectorial domain, cos(γϕ) > 0 and so
exp
(
−εrγ cos(γϕ)

)
< 1, hence

|F (z)| ≤ |f(z)|

in the closed domain. In particular, |F (z)| ≤ M on the boundary of the domain.
In the open sector,

|F (reiϕ)| = e−εr
γ cos(γϕ)|f(z)| ≤ Ker

β−εrγ cos(γϕ).

Since γ > β, rβ − εrγ cos(γϕ)→ −∞ as r → +∞; therefore

|F (reiϕ)| ≤M

for r large enough. Therefore, by the maximum principle, applied for the shaded
domain in the adjacent figure, |F (z)| ≤ M in the whole shaded domain. Since r
may be taken arbitrarily large, the inequality |F (z)| ≤M in the whole open sector.
Therefore,

|f(z)| ≤Meεr
γ cos(γϕ) ≤Meεr

γ

.

Letting ε→ 0, we get the assertion. �
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Theorem 8.2. Change the estimate for f in the open sector to

|f(z)| ≤ Keδ|z|
α

= K(δ)eδ|z|
α

for every δ > 0, and keep the remaining assumptions unchanged. Then the same
conclusion holds.

Proof. Again, we may assume the sector to be |ϕ| ≤ π
2α . Given ε > 0, define

F (z) := e−εz
α

f(z).

If δ < ε, then we get on the real axis

|f(x)| ≤ Keδx
α

and
|F (x)| ≤ Ke−εx

α

eδx
α

= Ke(δ−ε)xα → 0 as x→∞.

Since |F (x)| ≥ 0 is continuous, we get, for a finite M ′,

|F (x)| ≤M ′ := max{ |F (t)| | t ≥ 0 }

for all x ≥ 0. Consider now F (z) in the upper and lower half-sectors. Defining
M ′′ := max(M,M ′), we see that the inequality |F (z)| ≤ M ′′ holds on the bound-
aries of both half-sectors and |F (z)| ≤ Keδrα inside of the half-sectors. For ϕ such
that |ϕ| ≤ π

2α , obviously
e−εr

α cos(ϕα) ≤ e+εrα

and so, for some K ′ > 0,

|F (z)| = |e−εz
α

||f(z)| ≤ Ke−εr
α cos(ϕα)eδr

α

≤ Ke(δ+ε)rα ≤ K ′er
β

for any β such that α < β < 2α. By Theorem 8.1, |F (z)| ≤M ′′ in both half-sectors,
and therefore in the whole sector |ϕ| ≤ π

2α .
Assume now that M ′ > M , hence M ′′ = M ′ > M . Since F (x) → 0 as x → ∞

and |F (0)| ≤ M , there must exist a point x0 ∈ (0,+∞) such that |F (x0)| = M ′ =
M ′′. By the maximum principle, F must be identically equal to the constant M ′,
a contradiction. Therefore, we must have M ′ ≤ M and so M ′′ = M . This implies
that |F (z)| ≤M in the whole sector. But this means that

|f(z)| ≤M |eεz
α

|.

Letting now ε→ 0, the assertion follows. �

Theorem 8.3. Suppose f(z)→ a as z →∞ along two half-lines starting from the
origin, and assume that f(z) is analytic and bounded in one of the sectors between
these two half-lines. Then f(z)→ a uniformly as r →∞ in that sector.

Proof. Considering f(z) − a, if needed, we may assume that a = 0. Moreover, if
needed, we may consider g(ζ) = f((ζ)2) to achieve that the sector to be treated
is < π. Finally, we may restrict us to considering the case of two half-lines ±ϕ,
ϕ < π

2 , by an additional rotation.
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Take now an arbitrary ε > 0. Clearly, we may assume that |f(z)| ≤ M in the
closed sector, while on the boundary half-lines, |f(z)| < ε for all r > r1 = r1(ε).
Denote now λ = r1M

ε > 0 and define

F (z) =
z

z + λ
f(z).

Then
|F (z)| = r

(r2 + 2λRe z + λ2)1/2 |f(z)| < r

(r2 + λ2)1/2 |f(z)|.

Now, for r ≤ r1,

|F (z)| < r|f(z)|
(r2 + λ2)1/2 ≤

rM

λ
≤ r1M

λ
= ε

and on the boundary half-lines

|F (z)| < |f(z)| < ε,

provided r > r1. Inside of the open sector, uniformly as r →∞,

|F (z)| < |f(z)| ≤M ≤Mer ≤Mer
β

≤Mer
α

for any α, β such that 1 < β < α. Since the opening of the sector is < π, we may
take some α > 1 such that the opening equals to π

α . By Theorem 8.1, |F (z)| ≤ ε
in the closed sector. Therefore,

|f(z)| =
∣∣∣∣1 +

λ

z

∣∣∣∣ |f(z)| ≤
(

1 +
λ

r

)
|F (z)| ≤ 2ε

for all r > λ. Since ε > 0 is arbitrary, f(z) → 0 uniformly as r → ∞ inside of the
sector. �

Theorem 8.4. Suppose f(z) → a along a half-line starting from the origin and
f(z)→ b along a second half-line, again starting from the origin. Moreover, suppose
that f is analytic and bounded in one of the two sectors between these half-lines.
Then a = b and f(z)→ a uniformly in that sector as r →∞.

Proof. Suppose that f(z) → a along ϕ = α and f(z) → b along ϕ = β, and that
α < β. Consider now, instead of f , the function

g(z) :=
(
f(z)− a+ b

2

)2

.

It is now immediate to observe that

g(z)→
(
a− a+ b

2

)2

= 1
4 (a− b)2

on ϕ = α and

g(z)→
(
b− a+ b

2

)2

= 1
4 (a− b)2.
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By Theorem 8.3, g(z)→ 1
4 (a− b)2 uniformly in the sector as r →∞. Therefore,

g(z)− 1
4 (a− b)2 =

(
f(z)− 1

2 (a+ b)
)2 − 1

4 (a− b)2 =
(
f(z)− a

)(
f(z)− b

)
→ 0

in the whole sector, uniformly as r → ∞. Take now a circular arc, centred at the
origin, such that

|f(z)− a||f(z)− b| ≤ ε

along this arc, inside of the closed sector. Then, at every point of this arc,

|f(z)− a| ≤
√
ε or |f(z)− b| ≤

√
ε.

If one of these inequalities holds on the whole arc, say |f(z)−a| ≤
√
ε, and assuming

that this circular arc has a radius large enough, then at the endpoint with ϕ = β,
we get

|a− b| ≤ |f(z)− a|+ |f(z)− b| ≤ 2
√
ε.

If this is not the case, then denote the two non-empty parts of the arc as Γa = { z |
|f(z) − a| ≤

√
ε } and Γb = { z | |f(z) − b| ≤

√
ε }. These are now closed sets and

their union clearly equals to the whole circular arc. If their intersection would be
empty, then, by elementary topology, one of these sets had to be empty, reducing to
the previous case. Therefore, we may take a point z0 from the intersection. Then

|a− b| ≤ |f(z0)− a|+ |f(z0)− b| ≤ 2
√
ε.

Letting now ε→ 0, we get a = b. By Theorem 8.3, we get the assertion. �

Remark. Several variants of the Phragmén-Lindelöf theorems can be found in the
literature, including also various regions, instead of sectors only.
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