9. ZEROS OF ENTIRE FUNCTIONS

Let f(z) be an entire function and consider a disk |z| < 7 centred at z = 0.
If r is large enough and f(z) is a polynomial of degree n, then f(z) = « has
n roots in |z| < r. Moreover M (r, f) ~ r™ on the boundary of the disk. This
connection between the number of a-points and the maximum modulus carries
over to transcendental entire functions. This is a deep property; moreover, some
exceptional values o may appear.

Definition 9.1. Let (r;) be a sequence of real numbers such that 0 < r; < ry <
---. The convergence exponent A for (r;) will be defined by setting

A= inf{ a>0 ‘ i(rj)_o‘ converges }
j=1

Remark. If Z]Oil r;“ diverges for all @ > 0, then A = +o00 as the infimum of an
empty set.

Definition 9.2. Let f(z) be entire and let (z,,) be the zero-sequence of f(z), delet-
ing the possible zero at z = 0, every zero # 0 repeated according to its multiplicity,
and arranged according to increasing moduli, i.e. 0 < |z1] < |2z2] < ---. The
convergence exponent A(f) (for the zero-sequence of f) is now

A(f) == inf{ a>0 ‘ i EA Converges}.
j=1

Definition 9.3. Denote by n(t) = n(t, %) the number of zeros of f(z) in |z| < t,

each zero counted according to its multiplicity.

Remark. In what follows, we assume that f(0) # 0. This is no essential restriction,
since we may always replace n(t) by n(t) —n(0) below, if f(0) = 0.

Lemma 9.4. The series Z;’;l 12|~ converges if and only if fooo n(t)t= (@t dt

CONVETgES.

Proof. Observe that n(t) is a step function: zeros of f(z) are situated on countably
many circles centred at z = 0. Between these radii, n(¢) is constant and so dn(t) =0
for these intervals. Passing over these radii dn(t) jumps by an integer equals to the
number of zeros on the circle. Therefore,
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By partial integration,
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Assume now that Z;’;l |zj|* converges. Then, for each T,
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Therefore, fooo ;(i)l dt converges.
Conversely, assume that the integral converges. Then
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for each N. Therefore, 3 77 |2j|~* converges. [

Corollary 9.5. Let f(z) be an entire function, f(0) # 0. Then

Af) = inf{ a>0 ’ /00 n(t) dt converges}.
0

toz—l—l

1
Theorem 9.6. A\(f) = limsup M.
r—oo lOgr

Proof. Denote

. log n(r)
o = limsup .
rooo logr

Given € > 0, there exists r. such that

for all » > r.. Then
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As M — oo, this converges, if c —a—1+4+e¢ < -1 = «a > o +e¢. Now, this is
true for all o > 0 such that a > o + . Therefore

> n(t
inf{ a>0 ‘ /0 Zé(Jr)l dt converges } <o+e.

By Corollary 9.5, A(f) < o + ¢ and so A(f) < o.

To prove the converse inequality, we may assume that ¢ > 0. Take € > 0 such
that € < 0. Then there is a sequence r; — 400 such that

log n(r;)

>0 —¢c,
log r;
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hence
n(rj) >ri *.

Take now any a > 0 such that 0 < o < 0 —e. For each j, select
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Since n(t) is increasing, we get
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Since o« < 0 — ¢, and so 0 — a — ¢ > 0, we see that

Sj t
/ n()dt—>+oo as j — oo.
T
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Therefore, fooo Zl(i)l dt diverges for all o, 0 < o < 0 — €. This means that

1nf a>0‘/

Therefore A(f) >0 —¢ = A(f)>0. O
Theorem 9.7. (Jensen). Let f(z) be entire such that f(0) # 0 and denote

w0 - (r 1) = [0

Assume that there are no zeros of f on the circle |z| =1 > 0. Then

}20—5.

1 27 ‘
N = 5= [ loglf(re') dg ~log | F(O).

Remark. The restriction for zeros on |z| = r is unessential, and may be removed
by a rather complicated reasoning.

Proof. Let ay,aq,...,a, be the zeros of f in |z| < r. Consider

Then g(z) # 0 in |z| < R for an R > r. For |z| < p < R, p # r, this is clear. If
|z] = r, we see that (z = re'¥)

2 _ =, 2 _ F ool Tt -
T CLJZ T CLJT‘G . T aje T aje ¥

—a 2000 _ g I
r(z —a;) r2et — a;r r—aje”®

45

.l
r—a;e"'¥



and so |g(2)| = |f(z)| # 0. Since g # 0 in |z| < R, it is an elementary computation
(by making use of Cauchy—Riemann equations) that log |g(z)| is harmonic in |z] <
R, i.e. that A(log|g(z)]) = 0. By the mean value property of harmonic functions,
CAI, Theorem 10.5, that
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Comparing this to the assertion, we observe that
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remains to be proved. Denote r; = |a;|. Then

n

Z log Z log lOg (]1:[1 log %) = log r r .

n—1

=nlogr — Zlogrj = Zj(logrj+1 —logr;) + n(logr —logry,)
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Remark. Given ¢: [rg, +00) — (0, +00), the Landau symbols O (¢ (r)) and o(p(r))
are frequently used. They mean any quantity f(r) such that
For O(¢(r)): 3K > 0 such that |f(r)/¢(r)] < K for r sufficiently large,

B flr) _
for o((r)): lim,— oo ) =0

Theorem 9.8. Let f(z) be entire of order p. Then for each e > 0, n(r) = O(rP*e).

Proof. We may assume that |f(0)| > 1 by multiplying f by a constant, if needed.
By the Jensen formula

1 27 ) 1 27
N@g—/ MWWWWS—/EMMWﬂWZMMmH
2 Jo 2m Jo
46



By the order, log M (r, f) < rP*¢ for all r sufficiently large. Since n(t) is increasing,
2r 2r 2
n(r)log2 = n(r)/ dt S/ n(t) dt S/ n(t) dt
r 13 r t 0 t
= N(2r) <log M(2r, f) < (2r)PTe = 2°Teprte

for r sufficiently large. Therefore

1
< | —— .orte ) prte,
n(r) < (log2 2 )r O

Theorem 9.9. For any entire function f(z), A(f) < p(f).
Proof. By Theorem 9.8, given € > 0, there exists K > 0 such that
n(r) < Krf*t, p=p(f)

for r sufficiently large, say r > rg. Then
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If now a > p+¢, then p+ec—a—1 < —1, and therefore the last integral converges

as M — oo, hence
< n(t
/ n(t) dt converges.
0

ta+1

This means that A\(f) < p+¢e and so A(f) < p(f). O
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