
9. Zeros of entire functions

Let f(z) be an entire function and consider a disk |z| ≤ r centred at z = 0.
If r is large enough and f(z) is a polynomial of degree n, then f(z) = α has
n roots in |z| ≤ r. Moreover M(r, f) ∼ rn on the boundary of the disk. This
connection between the number of a-points and the maximum modulus carries
over to transcendental entire functions. This is a deep property; moreover, some
exceptional values α may appear.

Definition 9.1. Let (rj) be a sequence of real numbers such that 0 < r1 ≤ r2 ≤
· · · . The convergence exponent λ for (rj) will be defined by setting

λ = inf
{
α > 0

∣∣∣ ∞∑
j=1

(rj)−α converges
}
.

Remark. If
∑∞
j=1 r

−α
j diverges for all α > 0, then λ = +∞ as the infimum of an

empty set.

Definition 9.2. Let f(z) be entire and let (zn) be the zero-sequence of f(z), delet-
ing the possible zero at z = 0, every zero 6= 0 repeated according to its multiplicity,
and arranged according to increasing moduli, i.e. 0 < |z1| ≤ |z2| ≤ · · · . The
convergence exponent λ(f) (for the zero-sequence of f) is now

λ(f) := inf
{
α > 0

∣∣∣ ∞∑
j=1

|zj |−α converges
}
.

Definition 9.3. Denote by n(t) = n(t, 1
f ) the number of zeros of f(z) in |z| ≤ t,

each zero counted according to its multiplicity.

Remark. In what follows, we assume that f(0) 6= 0. This is no essential restriction,
since we may always replace n(t) by n(t)− n(0) below, if f(0) = 0.

Lemma 9.4. The series
∑∞
j=1 |zj |−α converges if and only if

∫∞
0 n(t)t−(α+1) dt

converges.

Proof. Observe that n(t) is a step function: zeros of f(z) are situated on countably
many circles centred at z = 0. Between these radii, n(t) is constant and so dn(t) = 0
for these intervals. Passing over these radii dn(t) jumps by an integer equals to the
number of zeros on the circle. Therefore,

N∑
j=1

|zj |−α =
∫ T

0

dn(t)
tα

, where T = |zN |.

By partial integration,∫ T

0

dn(t)
tα

=
/T

0

n(t)
tα

+ α

∫ T

0

n(t)
tα+1 dt =

n(T )
Tα

+ α

∫ T

0

n(t)
tα+1 dt.

Assume now that
∑∞
j=1 |zj |α converges. Then, for each T ,

α

∫ T

0

n(t)
tα+1 dt ≤

∫ T

0

dn(t)
tα

=
N∑
j=1

|zj |−α ≤
∞∑
j=1

|zj |−α < +∞.
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Therefore,
∫∞

0
n(t)
tα+1 dt converges.

Conversely, assume that the integral converges. Then

n(T )
Tα

(1− 2−α)
1
α

= n(T )
∫ 2T

T

dt

tα+1 ≤
∫ 2T

T

n(t)
tα+1 dt ≤

∫ ∞
0

n(t) dt
tα+1 =: K < +∞.

Therefore,

N∑
j=1

|zj |−α =
n(T )
Tα

+ α

∫ T

0

n(t)
tα+1 dt

≤ Kα

1− 2−α
+ α

∫ ∞
0

n(t)
tα+1 dt =

Kα

1− 2−α
+ αK < +∞

for each N . Therefore,
∑∞
j=1 |zj |−α converges. �

Corollary 9.5. Let f(z) be an entire function, f(0) 6= 0. Then

λ(f) = inf
{
α > 0

∣∣∣ ∫ ∞
0

n(t)
tα+1 dt converges

}
.

Theorem 9.6. λ(f) = lim sup
r→∞

logn(r)
log r

.

Proof. Denote

σ := lim sup
r→∞

logn(r)
log r

.

Given ε > 0, there exists rε such that

n(r) ≤ rσ+ε

for all r ≥ rε. Then∫ M

0

n(t)
tα+1 dt =

∫ rε

0

n(t) dt
tα+1 +

∫ M

rε

n(t) dt
tα+1

≤
∫ rε

0

n(t) dt
tα+1 +

∫ M

rε

tσ−α−1+ε dt.

As M → ∞, this converges, if σ − α − 1 + ε < −1 =⇒ α > σ + ε. Now, this is
true for all α > 0 such that α > σ + ε. Therefore

inf
{
α > 0

∣∣∣ ∫ ∞
0

n(t)
tα+1 dt converges

}
≤ σ + ε.

By Corollary 9.5, λ(f) ≤ σ + ε and so λ(f) ≤ σ.
To prove the converse inequality, we may assume that σ > 0. Take ε > 0 such

that ε < σ. Then there is a sequence rj → +∞ such that

logn(rj)
log rj

≥ σ − ε,
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hence
n(rj) ≥ rσ−εj .

Take now any α > 0 such that 0 < α < σ − ε. For each j, select

sj ≥ 21/αrj .

Since n(t) is increasing, we get

∫ sj

rj

n(t) dt
tα+1 ≥ n(rj)

∫ sj

rj

dt

tα+1 ≥ r
σ−ε
j

1
α

(
1
rαj
− 1
sαj

)

≥ 1
α
rσ−εj

1
rαj

(1− 1
2 ) =

1
2α
rσ−α−εj .

Since α < σ − ε, and so σ − α− ε > 0, we see that∫ sj

rj

n(t)
tα+1 dt→ +∞ as j →∞.

Therefore,
∫∞

0
n(t)
tα+1 dt diverges for all α, 0 < α < σ − ε. This means that

inf
{
α > 0

∣∣∣ ∫ ∞
0

n(t)
tα+1 dt converges

}
≥ σ − ε.

Therefore λ(f) ≥ σ − ε =⇒ λ(f) ≥ σ. �

Theorem 9.7. (Jensen). Let f(z) be entire such that f(0) 6= 0 and denote

N(r) = N

(
r,

1
f

)
=
∫ r

o

n(t)
t

dt.

Assume that there are no zeros of f on the circle |z| = r > 0. Then

N(r) =
1

2π

∫ 2π

0
log |f(reiϕ)| dϕ− log |f(0)|.

Remark. The restriction for zeros on |z| = r is unessential, and may be removed
by a rather complicated reasoning.

Proof. Let a1, a2, . . . , an be the zeros of f in |z| ≤ r. Consider

g(z) := f(z)
n∏
j=1

r2 − ajz
r(z − aj)

.

Then g(z) 6= 0 in |z| ≤ R for an R > r. For |z| < ρ < R, ρ 6= r, this is clear. If
|z| = r, we see that (z = reiϕ)∣∣∣∣ r2 − ajz

r(z − aj)

∣∣∣∣ =
∣∣∣∣r2 − ajreiϕ

r2eiϕ − ajr

∣∣∣∣ =
∣∣∣∣ r − ajeiϕr − aje−iϕ

∣∣∣∣ =
∣∣∣∣r − aje−iϕr − aje−iϕ

∣∣∣∣ = 1
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and so |g(z)| = |f(z)| 6= 0. Since g 6= 0 in |z| < R, it is an elementary computation
(by making use of Cauchy–Riemann equations) that log |g(z)| is harmonic in |z| <
R, i.e. that ∆

(
log |g(z)|

)
≡ 0. By the mean value property of harmonic functions,

CAI, Theorem 10.5, that

log |g(0)| = 1
2π

∫ 2π

0
log |g(reiϕ)| dϕ.

Since

|g(0)| = |f(0)|
n∏
j=1

r

|aj |
,

we get

1
2π

∫ 2π

0
log |f(reiϕ)| dϕ =

1
2π

∫ 2π

0
log |g(reiϕ)| dϕ

= log |g(0)| = log
(
|f(0)|

n∏
j=1

r

|aj |

)
= log |f(0)|+

n∑
j=1

log
r

|aj |
.

Comparing this to the assertion, we observe that∫ r

0

n(t)
t

dt =
n∑
j=1

log
r

|aj |

remains to be proved. Denote rj = |aj |. Then

n∑
j=1

log
r

|aj |
=

n∑
j=1

log
r

rj
= log

( n∏
j=1

log
r

rj

)
= log

rn

r1 · · · rn

= n log r −
n∑
j=1

log rj =
n−1∑
j=1

j(log rj+1 − log rj) + n(log r − log rn)

=
n−1∑
j=1

j

∫ rj+1

rj

dt

t
+ n

∫ r

rn

dt

t
=
∫ r

0

n(t)
t

dt. �

Remark. Given ϕ : [r0,+∞)→ (0,+∞), the Landau symbolsO
(
ϕ(r)

)
and o

(
ϕ(r)

)
are frequently used. They mean any quantity f(r) such that

For O
(
ϕ(r)

)
: ∃K > 0 such that |f(r)/ϕ(r)| ≤ K for r sufficiently large,

for o
(
ϕ(r)

)
: limr→∞

f(r)
ϕ(r) = 0.

Theorem 9.8. Let f(z) be entire of order ρ. Then for each ε > 0, n(r) = O(rρ+ε).

Proof. We may assume that |f(0)| ≥ 1 by multiplying f by a constant, if needed.
By the Jensen formula

N(r) ≤ 1
2π

∫ 2π

0
log |f(reiϕ)| dϕ ≤ 1

2π

∫ 2π

0
logM(r, f) dϕ = logM(r, f).
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By the order, logM(r, f) ≤ rρ+ε for all r sufficiently large. Since n(t) is increasing,

n(r) log 2 = n(r)
∫ 2r

r

dt

t
≤
∫ 2r

r

n(t) dt
t
≤
∫ 2r

0

n(t) dt
t

= N(2r) ≤ logM(2r, f) ≤ (2r)ρ+ε = 2ρ+εrρ+ε

for r sufficiently large. Therefore

n(r) ≤
(

1
log 2

· 2ρ+ε
)
rρ+ε. �

Theorem 9.9. For any entire function f(z), λ(f) ≤ ρ(f).

Proof. By Theorem 9.8, given ε > 0, there exists K > 0 such that

n(r) ≤ Krρ+ε, ρ = ρ(f)

for r sufficiently large, say r ≥ r0. Then∫ M

0

n(t)
tα+1 dt =

∫ r0

0

n(t)
tα+1 dt+

∫ M

r0

n(t) dt
tα+1 ≤

∫ r0

0

n(t)
tα+1 dt+K

∫ M

r0

tρ+ε−α−1 dt

If now α > ρ+ ε, then ρ+ ε−α− 1 < −1, and therefore the last integral converges
as M →∞, hence ∫ ∞

0

n(t)
tα+1 dt converges.

This means that λ(f) ≤ ρ+ ε and so λ(f) ≤ ρ(f). �
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