- 1. If f(z) = u + iv is entire (kokonainen), and if $u = x^3 3xy^2$, find v from the Cauchy-Riemann equations, and express f(z) as a polynomial in z, which is unique up to a pure imaginary constant.
- 2. Show that $f(z) = (1 + z^2)/(z^2 1)$ is analytic at ∞ .
- 3. Test $\sum \alpha_n$ for convergence where α_n is

(a)
$$\frac{n!}{n^n}$$
 (b) $\frac{n^3(n+1)^n}{(3n)^n}$ (use $\sqrt[n]{n} \to 1$ as $n \to \infty$).

4. Find the radius of convergence of $\sum \frac{z^k}{k^2}$.

- 5. Find the radius of convergence of $\sum \left(\frac{n+1}{n}\right)^{n^2} z^n$.
- 6. Find the radius of convergence of $\sum \frac{1}{n^p} z^n$ and $\sum n^p z^n$, p > 0.