- 1. Suppose that f(z) = u(z) + iv(z) is an entire function and there exists M > 0 such that $u(z) \leq M$. Show that f(z) is constant.
- 2. Find the Taylor series of the following functions about the indicated centers

(a)
$$\frac{1}{z}$$
, 1; (b) $\frac{1}{z}$, 2; (c) $\log(1+z)$, 0.

- 3. Find the Taylor series of $\sin z$ about $\pi/2$.
- 4. Find the Laurent series of the following functions in the indicated annuli:

(a)
$$\frac{1}{1-z}$$
, $|z| > 1$; (b) $\frac{\sin z}{z^3}$, $|z| > 0$.

5. Suppose f(z) is analytic for |z| < 1 and $|f(z)| \le M$. If $f(z) = \sum_{0}^{\infty} a_n z^n$ show that

$$\sum_{0}^{\infty} |a_n|^2 \le M^2. \text{ Hint: For } r < 1$$
$$|f(re^{i\theta})|^2 = f(re^{i\theta})\overline{f(re^{i\theta})} = \left(\sum_{0}^{\infty} a_n r^n e^{in\theta}\right) \left(\sum_{0}^{\infty} \bar{a}_k r^k e^{-ik\theta}\right),$$

then integrate about θ from 0 to 2π .