Key to Demonstration 5

I.

Solution u = u + iv, by Cauchy-Riemann equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, we have

$$\frac{\partial v}{\partial y} = 3x^2 - 3y^2$$
 and $\frac{\partial v}{\partial x} = -(-6xy) = 6xy.$

We know that $dv = \frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy$, so for any point (x_0, y_0) , let $C = C_1 + C_2$ be a segmented line, $(0,0) \xrightarrow{C_1} (x_0,0) \xrightarrow{C_2} (x_0,y_0)$,

$$v(x_{0}, y_{0}) - v(0, 0) = \int_{C} dv = \int_{C} \left(\frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy\right)$$
$$= \left(\int_{C_{1}} + \int_{C_{2}}\right) \left(\frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy\right)$$
$$= \int_{C_{1}} 6xydx + \int_{C_{2}} (3x^{2} - 3y^{2})dy$$
$$= 3\int_{C_{2}} (x_{0}^{2} - y^{2})dy = 3\int_{0}^{y_{0}} (x_{0}^{2} - y^{2})dy$$
$$= 3\int_{0}^{y_{0}} \left(x_{0}^{2}y - \frac{y^{3}}{3}\right)dy = 3(x_{0}^{2}y_{0} - \frac{y_{0}^{3}}{3})$$

Thus $v(x_0, y_0) = 3x_0^2y_0 - y_0^3 + v(0, 0)$, then $f(z) = f(x,y) = u(x,y) + iv(x,y) = x^3 - 3xy^2 + i(3x^2y - y^3) + iv(0,0) = (x + iy)^3 + iv(0,0) = z^3 + iv(0,0).$

Solution Since $f(z) = \frac{1+z^2}{z^2-1} = \frac{1+z^2}{(z+1)(z-1)}$, it is easy to see that there exists N, s.t. f(z) is analytic in $B(\infty, N) = \{z \in \mathbb{C}, |z| > N\}$. II. Let $z = \frac{1}{\zeta}$, then

$$f(z) = f\left(\frac{1}{\zeta}\right) = \frac{1 + \frac{1}{\zeta^2}}{\frac{1}{\zeta} - 1} = \frac{\zeta^2 + 1}{1 - \zeta^2}$$

is analytic at 0, so f(z) is analytic at ∞ .

III.

Solution

(a)
$$\lim_{n \to \infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} \right| = \lim_{n \to \infty} \frac{n^n}{(n+1)^n} = \frac{1}{e} < 1,$$

so $\sum \alpha_n$ is convergent.

(b)
$$\lim_{n \to \infty} \sqrt[n]{\frac{n^3(n+1)^n}{(3n)^n}} = \lim_{n \to \infty} \sqrt[n]{n^3} \cdot \frac{n+1}{3n} = \lim_{n \to \infty} (\sqrt[n]{n})^3 \left(\frac{1}{3} + \frac{1}{3n}\right) = \frac{1}{3} < 1,$$

so $\sum \alpha_n$ is convergent. **IV. Solution** $a = \lim \frac{(n+1)^2}{n^2} = \lim \left(1 + \frac{1}{n}\right)^2 = 1$, and so $\rho = 1/a = 1$. **V. Solution** $a = \lim \sqrt[n]{[(n+1)/n]^{n^2}} = \lim \left(1 + \frac{1}{n}\right)^n = e$, where $e \approx 2.71828...$ is the base of natural logarithms. Hence $\rho = \frac{1}{e} \approx 0.367...$ **VI. Solution** $a = \lim \frac{1}{\left(\frac{n+1}{n}\right)^p} = \lim \frac{1}{\left(1 + \frac{1}{n}\right)^p} = \lim \frac{1}{e^{\frac{p}{n}}} = 1$, and so $\rho = 1/a = 1$. $a = \lim \left(\frac{n+1}{n}\right)^p = \lim \left(1 + \frac{1}{n}\right)^p = \lim e^{\frac{p}{n}} = 1$, and so $\rho = 1/a = 1$. **Supplement** To show that $n^{\frac{1}{n}} \to 1$, we only need to see that $\log n^{\frac{1}{n}} = \frac{\log n}{n} \to 0$.

Similarly, to show that $a^{\frac{1}{n}} \to 1$, we only need to see that $\log a^{\frac{1}{n}} = \frac{\log a}{n} \to 0$.