
Key to Demonstration 10

I.
Solution. (a) We compute derivatives and evaluate at π/2:

n at z at π/2 coefficients
0 cos z 0 0
1 − sin z −1 −1
2 − cos z 0 0
3 sin z 1 1/3!
4 cos z 0 0
...

...
...

...
2k − 1 (−1)k sin z (−1)k (−1)k/(2k − 1)!

2k (−1)k cos z 0 0
...

...
...

...

The series we want is then
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)
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−· · ·+ (−1)k

(2k − 1)!
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2
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+· · · =
∞∑
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.

(b) Since cos2 z =
1

2
cos 2z +

1

2
, by geometric series, we get

cos2 z =
1

2
+

1

2

∞∑
0

(−1)k

(2k)!
(2z)2k = 1 +

∞∑
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(−4)k

(2k)!
z2k.

II.
Solution. (a) Since 0 < |z − 1| < 1, by geometric series, we get

1

z(1− z)
=

1

1− z
· 1

1 + (z − 1)
=

1

1− z
·
∞∑

k=0

[−(z − 1)]k =
∞∑

k=0

(−1)k+1(z − 1)k−1.

(b) Since |z − 1| > 1,
1

|z − 1| < 1, by geometric series, we get

1

z(1− z)
=

1

1− z
· 1

1 + (z − 1)
=

1

1− z
· 1

(z − 1)(1 + 1
z−1

)

= − 1
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·
∞∑
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=
∞∑
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( 1
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.

III.
Solution. By geometric series, when |z| > 0, we have

1− cos z

z2
=

1

z2

(
1−

∞∑
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(2k)!
z2k

)
=
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z2k−2.
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From the series above, it is easy to see that
1− cos z

z2
→ 1

2
, as z → 0.

IV.

Proof. Let z = cos θ + i sin θ, dθ =
dz

iz
and cos θ =

1

2
(z +

1

z
), then we can get

2π∫

0

e2 cos θdθ =− i

∫
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ez+ 1
z

z
dz = −i

∫

|z|=1

ez

z

∞∑
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1
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dz = −i

∞∑
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∣∣∣
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= 2π
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1

(n!)2
.

V.
Proof. (a) It is well known to all that for any α ∈ R, cos2 α + sin2 α = 1. Now

let f(z) = cos2 z, and let g(z) = 1 − sin2 z, it is easy to see that f(z) and g(z) are all
holomorphic in C. Let {αn} be any convergent real number sequence in C, thus we know
that f(αn) = g(αn), n = 1, 2, · · · , by uniqueness (identity) theorem, we have f(z) = g(z),
that is cos2 z + sin2 z = 1.

(b) For α ∈ R, let f(z) = sin(z + α) and g(z) = sin z cos α + cos z sin α. The proof is
similar with the above.
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