Key to Demonstration 10

I.

Solution. (a) We compute derivatives and evaluate at $\pi/2$:

The series we want is then

$$\cos z = -\left(z - \frac{\pi}{2}\right) + \frac{1}{3!} \left(z - \frac{\pi}{2}\right)^3 - \dots + \frac{(-1)^k}{(2k-1)!} \left(z - \frac{\pi}{2}\right)^{2k-1} + \dots = \sum_{0}^{\infty} \frac{(-1)^k}{(2k-1)!} \left(z - \frac{\pi}{2}\right)^{2k-1}$$

(b) Since $\cos^2 z = \frac{1}{2}\cos 2z + \frac{1}{2}$, by geometric series, we get

$$\cos^2 z = \frac{1}{2} + \frac{1}{2} \sum_{0}^{\infty} \frac{(-1)^k}{(2k)!} (2z)^{2k} = 1 + \sum_{1}^{\infty} \frac{(-4)^k}{(2k)!} z^{2k}$$

II.

Solution. (a) Since 0 < |z - 1| < 1, by geometric series, we get

$$\frac{1}{z(1-z)} = \frac{1}{1-z} \cdot \frac{1}{1+(z-1)} = \frac{1}{1-z} \cdot \sum_{k=0}^{\infty} [-(z-1)]^k = \sum_{k=0}^{\infty} (-1)^{k+1} (z-1)^{k-1}.$$

(b) Since |z - 1| > 1, $\frac{1}{|z - 1|} < 1$, by geometric series, we get

$$\frac{1}{z(1-z)} = \frac{1}{1-z} \cdot \frac{1}{1+(z-1)} = \frac{1}{1-z} \cdot \frac{1}{(z-1)(1+\frac{1}{z-1})}$$
$$= -\frac{1}{(z-1)^2} \cdot \sum_{k=0}^{\infty} \left(-\frac{1}{z-1}\right)^k = \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{1}{z-1}\right)^{k+2}.$$

III.

Solution. By geometric series, when |z| > 0, we have

$$\frac{1-\cos z}{z^2} = \frac{1}{z^2} \left(1 - \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k} \right) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2k)!} z^{2k-2}.$$

From the series above, it is easy to see that $\frac{1-\cos z}{z^2} \to \frac{1}{2}$, as $z \to 0$. IV.

Proof. Let $z = \cos \theta + i \sin \theta$, $d\theta = \frac{dz}{iz}$ and $\cos \theta = \frac{1}{2}(z + \frac{1}{z})$, then we can get

$$\int_{0}^{2\pi} e^{2\cos\theta} d\theta = -i \int_{|z|=1} \frac{e^{z+\frac{1}{z}}}{z} dz = -i \int_{|z|=1} \frac{e^{z}}{z} \sum_{n=0}^{\infty} \frac{1}{n! z^{n}} dz = -i \sum_{n=0}^{\infty} \frac{1}{n!} \int_{|z|=1} \frac{e^{z}}{z^{n+1}} dz$$
$$= -i \sum_{n=0}^{\infty} \frac{1}{n!} \frac{2\pi i}{n!} \cdot \left(e^{z}\right)^{(n)}\Big|_{z=0} = 2\pi \sum_{n=0}^{\infty} \frac{1}{(n!)^{2}}.$$

V.

Proof. (a) It is well known to all that for any $\alpha \in \mathbb{R}$, $\cos^2 \alpha + \sin^2 \alpha = 1$. Now let $f(z) = \cos^2 z$, and let $g(z) = 1 - \sin^2 z$, it is easy to see that f(z) and g(z) are all holomorphic in \mathbb{C} . Let $\{\alpha_n\}$ be any convergent real number sequence in \mathbb{C} , thus we know that $f(\alpha_n) = g(\alpha_n), n = 1, 2, \cdots$, by uniqueness (identity) theorem, we have f(z) = g(z), that is $\cos^2 z + \sin^2 z = 1$.

(b) For $\alpha \in \mathbb{R}$, let $f(z) = \sin(z + \alpha)$ and $g(z) = \sin z \cos \alpha + \cos z \sin \alpha$. The proof is similar with the above.