Key to Demonstration 11

I.

Proof. (Note: The manner of one-to-one indicates the mapping is injective and surjective as well.)

For two points w_1, w_2 in w-plane, be not ∞ , if $w_1 = w_2$, it means $\alpha z_1 + \beta = \alpha z_2 + \beta$, then $z_1 = z_2$, since $\alpha \neq 0$, so it is injective.

For the point $w_0 = re^{i\theta_0}$ in w-plane, be not ∞ , $z_0 =$ $re^{i\theta_0}$ α − β α , where $\alpha \neq 0$, is in z-plane, such that $z_0 \rightarrow w_0$ under this mapping, so it is surjective.

For $z = \infty$, choose any sequence $\{z_n\} \to \infty$, it means that for any $r > 0$, there exists $N \in \mathbb{N}$, such that when $n \geq N$, $\{z_n\} \subset B(\infty, r)$, where

$$
B(\infty, r) = \{ z \in \mathbb{Z}, |z| > r \}.
$$

Under the linear transformation $w = \alpha z + \beta$, $\alpha \neq 0$, the chosen sequence is first mapped to the sequence $\{\eta_n\} = \{\alpha z_n\}$. It is obvious that when $n \ge N$, $\{\eta_n\} \subset B(\infty, r|\alpha|)$, that is $\{\eta_n\} \to \infty$ too. Then for $\{w_n\} = \{\alpha z + \beta\} \subset B(\infty, |r|\alpha| - |\beta|)$, when $n \ge N$, it tells us $\{w_n\} \to \infty$. It showes that the mapping maps $z = \infty$ onto $w = \infty$. Thus finishing the proof.

II.

Proof. If $\alpha z + \beta = 0$, then $w(z)$ reduces to constant 0; if $\alpha z + \beta \neq 0$, let $\delta =$ $\beta\gamma$ α , then

$$
w(z) = \frac{\alpha z + \beta}{\gamma z + \frac{\beta \gamma}{\alpha}} = \frac{\alpha(\alpha z + \beta)}{\alpha \gamma z + \beta \gamma} = \frac{\alpha}{\gamma},
$$

is also a constant.

III.

Proof. (Note: The manner of one-to-one indicates the mapping is injective and surjective as well.)

For two points w_1, w_2 in w-plane, be not 0 nor ∞ , if $w_1 = w_2$, it means 1 \overline{z}_1 = 1 z_2 , then $z_1 = z_2$, so it is injective.

For the point $w_0 = re^{i\theta_0}$ in w-plane, be not 0 nor ∞ , $z_0 = r^{-1}e^{-i\theta_0}$ is in z-plane, such that $z_0 \rightarrow w_0$ under this mapping, so it is surjective.

With the conventions, if $w_0 = 0$, $z_0 = 1/0 = \infty$; if $w_0 = \infty$, $z = 1/\infty = 0$, so this $w = 1/z$ maps the extended z-plane in a one-to-one manner onto the extended w-plane. IV.

Proof. A Möbius transformation $w(z) = \frac{\alpha z + \beta}{\beta}$ $\gamma z+\delta$, where $\alpha\delta - \beta\gamma \neq 0$, is a linear fractional mapping. If $\gamma = 0$, the Möbius transformation reduces to

$$
w = \frac{\alpha}{\delta}z + \frac{\beta}{\delta},
$$

which is linear, so is one-to-one mapping from $\widehat{\mathbb{C}}$ to $\widehat{\mathbb{C}}$, analytic. If $\gamma \neq 0$,

$$
w(z) = \frac{\alpha z + \beta}{\gamma z + \delta} = \frac{\beta \gamma - \alpha \delta}{\gamma} \cdot \frac{1}{\gamma z + \delta} + \frac{\alpha}{\gamma},\tag{1}
$$

it is easy to see that this transformation is analytic except when $\gamma z + \delta = 0$, i.e. $z =$ δ γ . To see this transformation is one-to-one, we set

$$
\begin{cases}\nz_1 = \gamma z + \delta \\
z_2 = 1/z_1 \\
w = \left[(\beta \gamma - \alpha \delta) / \gamma \right] z_2 + (\alpha/\gamma)\n\end{cases}
$$

we see that (1) is a linear transformation followed by an inversion followed in turn by another linear transformation.

V.

Proof. Choose a circle from (X) , denoted by C_1 , and a circle from (Y) , denoted by C_2 . Let's see when and where the two circles intersect. $\frac{1}{2}$

$$
\begin{cases} \left(u - \frac{1}{2a}\right)^2 + v^2 = \left(\frac{1}{2a}\right)^2\\ u^2 + \left(v + \frac{1}{2b}\right)^2 = \left(\frac{1}{2b}\right)^2. \end{cases}
$$

Immediately, we can get

$$
\begin{cases} u^2 - \frac{u}{a} + v^2 = 0 \\ u^2 + v^2 + \frac{v}{b} = 0. \end{cases}
$$

By simple calculation, we get they intersect at two points $(0, 0)$ and $\left(\frac{a}{a}\right)$ $\frac{a}{a^2+b^2}$, b $a^2 + b^2$ ´ .

It is easy to see that C_1 and C_2 intersects at $(0,0)$ in right angle. We only need to consider the other intersect point.

For C_1 , let $F(u, v) = u^2 - \frac{u}{v}$ a $+v²$, the slope of the tangent line of $C₁$ is

$$
\frac{du}{dv} = \frac{\frac{\partial F}{\partial v}}{\frac{\partial F}{\partial u}} = \frac{2v}{2u - \frac{1}{a}},
$$

then the slope of tangent for C_1 at the point $\left(\frac{a}{a^2+b^2},-\right)$ b $a^2 + b^2$ ´ is $-2ab$ $\frac{2ab}{a^2-b^2}$. In the same way, we get the slope of tangent for C_2 at the point $\left(\frac{a}{a^2+b^2},-\right)$ b $a^2 + b^2$ ´ is $a^2 - b^2$ $\frac{6}{2ab}$. Obviously, the two tangent intersects in right angle, since the product of the two slope

$$
\frac{-2ab}{a^2 - b^2} \cdot \frac{a^2 - b^2}{2ab} = -1.
$$

Thus finishing the proof.

VI. Proof.

$$
T \circ S(z) = T(S(z)) = \frac{\alpha_1(S(z)) + \beta_1}{\gamma_1(s(z)) + \delta_1} = \frac{\alpha_1\left(\frac{\alpha_2 z + \beta_2}{\gamma_2 z + \delta_2}\right) + \beta_1}{\gamma_1\left(\frac{\alpha_2 z + \beta_2}{\gamma_2 z + \delta_2}\right) + \delta_1} = \frac{(\alpha_1 \alpha_2 + \beta_1 \gamma_2)z + \alpha_1 \beta_2 + \beta_1 \delta_2}{(\alpha_2 \gamma_1 + \gamma_2 \delta_1)z + \beta_2 \gamma_1 + \delta_1 \delta_2}.
$$

Let $\alpha = \alpha_1 \alpha_2 + \beta_1 \gamma_2$, $\beta = \alpha_1 \beta_2 + \beta_1 \delta_2$, $\gamma = \alpha_2 \gamma_1 + \gamma_2 \delta_1$ and $\delta = \beta_2 \gamma_1 + \delta_1 \delta_2$, then we finally get

$$
T \circ S(z) = \frac{\alpha z + \beta}{\gamma z + \delta}.
$$