Numerical linear algebra

autumn 2004

Problem set 1

1. Let us consider the following matrix

$$A = \left(\begin{array}{cc} 2 & -1 \\ 4 & 0 \\ 0 & 1 \end{array}\right)$$

What is the image of A? What is the kernel of A? What is the rank of A?

- 2. Let A be as above. Compute $\|A\|_1$, $\|A\|_{\infty}$, $\|A\|_F$, $\|A^*\|_1$, $\|A^*\|_{\infty}$ and $\|A^*\|_F$. Is it always true that $\|A\|_F = \|A^*\|_F$? Is it always true that $\|A\|_1 = \|A^*\|_{\infty}$?
- 3. Show that $||AB|| \le ||A|| ||B||$ for p norms and Frobenius norm.
- 4. Let us consider the following norm:

$$||A|| = \max_{i,j} |a_{ij}|$$

Show that this is a norm. Then show by example that there are matrices A and B such that ||AB|| > ||A|| ||B|| (it is enough to consider 2×2 matrices).

5. Suppose that U is unitary matrix. Show that

- $|Ux|_2 = |x|_2$ for all x.
- $\|UA\|_2 = \|A\|_2 \text{ for all } A$.
- $\|UA\|_F = \|A\|_F \text{ for all } A$.