Numerical linear algebra

autumn 2004

Problem set 2

1. Consider the following matrix

$$A = \left(\begin{array}{cc} -2 & 11\\ -10 & 5 \end{array}\right)$$

Compute by hand the (real) singular value decomposition $A = U\Sigma V^T$. What is $||A||_p$ for $p = 1, 2, \infty, F$? Compute A^{-1} using SVD.

2. Compute the eigenvalues of A (A as in the previous problem). Check that

$$\det(A) = \lambda_1 \lambda_2$$
 and $|\det(A)| = \sigma_1 \sigma_2$

What is the area of ellipsoid onto which A maps the unit disk of \mathbb{R}^2 ? What is the best rank one approximation of A?

3. By eigenvalue decomposition of a square matrix A is meant a factorization of the form $A=X\Lambda X^{-1}$ where the columns of X are the eigenvectors and Λ is a diagonal matrix with eigenvalues on the diagonal. Give an example of a 2×2 matrix which does not have an eigenvalue decomposition. Suppose that $A\in\mathbb{C}^{m\times m}$ and $A=U\Sigma V^*$. What is an eigenvalue decomposition of

$$B = \left(\begin{array}{cc} 0 & A^* \\ A & 0 \end{array}\right) ?$$

- 4. Suppose that $A \in \mathbb{C}^{m \times n}$ and $A = U\Sigma V^*$. What are the eigenvalue decompositions of AA^* and A^*A ?
- 5. A and B are unitarily equivalent if there is a unitary matrix Q such that $A = QBQ^*$. Is the following statement true or false:
 - A and B are unitarily equivalent if and only if A and B have same singular values.

Prove this or give counterexamples.

Homework (to be returned to Katva before the exam)

Splines.

Let $0 = x_0 < x_1 < ... < x_{n+1} = 1$. For simplicity let us assume that $x_i = ih$ where h = 1/(n+1). Let us be given some points (x_i, y_i) , i = 0, ..., n+1, and define the intervals $I_k = [x_{k-1}, x_k]$. We want to construct a function (cubic spline) $s:[0,1] \to \mathbb{R}$ with the following properties:

I. s is twice continuously differentiable

II. $s(x_i) = y_i$ for all i = 0, ..., n + 1

III. s restricted to each I_k is a polynomial of third degree

IV. s'(0) = s'(1) = 0

Since a polynomial of third degree is specified by 4 coefficients and there are n + 1 intervals there are in principle 4n + 4 unknowns to be determined. However, it is in fact enough to solve a linear system with n unknowns. Let us consider following polynomials

$$\begin{array}{rcl} \varphi_1(x) & = & 1 - 3x^2 + 2x^3 \\ \varphi_2(x) & = & 3x^2 - 2x^3 \\ \varphi_3(x) & = & x - 2x^2 + x^3 \\ \varphi_4(x) & = & -x^2 + x^3 \end{array}$$

See the picture.

- Any 3rd degree polynomial in interval I_k can be represented as

$$p_k(x) = a_k \, \varphi_1(\frac{x}{h} - k + 1) + b_k \, \varphi_2(\frac{x}{h} - k + 1) + h \, c_k \, \varphi_3(\frac{x}{h} - k + 1) + h \, d_k \, \varphi_4(\frac{x}{h} - k + 1)$$

This is our condition III.

- Now show that the condition II implies that $a_k = y_{k-1}$ and $b_k = y_k$. With this choice our s is already continuous.
- Let us denote $z_k = s'(x_k)$. Obviously requirement IV means that $z_0 = z_{n+1} = 0$. Now show that requiring the first derivative of s to be continuous (part of the condition I) implies that $c_k = z_{k-1}$ and $d_k = z_k$.
- Let us further put $z = (z_1, ..., z_n)$. We now have to compute z. Requiring that the second derivative of s is continuous gives us equations which determine z. Formulate the problem in the form Az = v. What kind of properties does A have? Is it symmetric? Is it sparse (harva)? Does the system always has a solution? Think about various criteria which guarantee the existence of a unique solution. Can some of them be applied in this case?

