Problem set 4

1. Check the following properties of the condition number:

$$- \kappa(A) \ge 1 \text{ for all } A$$

$$- \kappa(A) = \kappa(cA) = \kappa(A^{-1})$$

$$- \kappa_2(A) = \kappa_2(A^*)$$

$$- U \text{ unitary } \Longrightarrow \kappa_2(U) = 1$$

$$- U \text{ unitary } \Longrightarrow \kappa_2(A) = \kappa_2(AU) = \kappa_2(UA)$$

2. Consider the following matrix

$$A = \begin{pmatrix} 120 & 11 & -0.9 & 0.15 \\ 9.8 & 1.5 & 0.1 & -0.02 \\ -1.1 & 0.2 & -0.03 & 0.001 \\ 0.12 & 0.04 & 0.006 & 0.0004 \end{pmatrix}$$

Compute the condition number of A with Matlab (using the command cond). Try to find some (simple) matrices B_1 and B_2 such that the condition number of B_1AB_2 is much less than the condition number of A.

- 3. Finding matrices B_1 and/or B_2 as in the previous exercise is called *preconditioning*. Suppose we want to solve the problem Ax = b. Explain how to get the solution using the preconditioned matrix $\tilde{A} = B_1 A B_2$.
- 4. In the solution of the least squares problems there appear Vandermonde matrices. Matrix V is a Vandermonde matrix if there are numbers a_k such that

$$v_{ij} = a_i^{j-1}$$

The commands vander and fliplr will be useful in constructing such matrices. Load the population data: > load census . Vector cdate contains the years, and vector pop the corresponding populations. Plot the data. Find the least squares fit to the data using polynomials of different degree. Which is the lowest degree polynomial which adequately represents the data?

- Study the conditioning of the system, and in particular check that using normal equations approximately doubles the condition number.
- Compute the solution of degree 3 using
 - \rightarrow normal equations
 - → directly with Matlab's \
 - $\rightarrow QR$
 - \rightarrow SVD

Compare the results obtained. Compute also the corresponding residuals.

- You will find that the condition number grows quite fast when the degree of the polynomial grows. You can reduce significantly the condition number using a suitable preconditioning as in exercise 3. Which (diagonal) matrices B_1 and B_2 are useful here?
- Condition number can be reduced more effectively by scaling the problem appropriately. Above you have represented the polynomial as

$$p(t)=\sum_{k=0}^n\,a_k\,t^k$$

However, polynomials can be also represented as

$$p(t) = \sum_{k=0}^{n} a_k \left(\frac{t - t_0}{d}\right)^k$$

where t_0 and d are some convenient parameters. Choose t_0 and d such that the condition number of the resulting Vandermonde matrix is about 10.