Numerical linear algebra

autumn 2004

Problem set 6

1. The solution to the linear system Ux = b where U is an upper triangular matrix can be computed with back substitution. The general step in this is

$$u_{ii} x_i = b_i - u_{i,i+1} x_{i+1} - \dots - u_{i,n} x_n$$

Show that the total number of the flops required is n^2 .

2. Let us consider a 3×3 matrix A. We want to introduce zeros by left- and/or right-multiplication by orthogonal matrices Q_j like Householder reflectors. Consider the following structures:

$$(i) \quad \begin{pmatrix} \times & \times & 0 \\ 0 & \times & \times \\ 0 & 0 & \times \end{pmatrix}$$

$$(ii) \quad \begin{pmatrix} \times & \times & 0 \\ \times & 0 & \times \\ 0 & \times & \times \end{pmatrix}$$

$$(iii) \quad \begin{pmatrix} \times & \times & 0 \\ 0 & 0 & \times \\ 0 & 0 & \times \end{pmatrix}$$

Here \times denotes some nonzero element. For each structure which of the following situation holds:

- I. Can be obtained by a sequence of left-multiplications by matrices Q_i
- II. Not case I, but can be obtained by left- and right-multiplication by matrices Q_j
- III. Cannot be obtained by any sequence of left- and right-multiplication by matrices Q_j
- 3. If we can find the inverse matrix rapidly then we can also multiply matrices rapidly. More precisely show that
 - suppose that we can compute the inverse with $O(n^{\alpha})$ flops; then we can compute the product with $O(n^{\alpha})$ flops.

Hint: consider the following matrix:

$$\left(\begin{array}{ccc}
1 & a & 0 \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)$$

4. Let us consider the following matrix

$$G = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}$$
, $\det(G) = 1$

This is called *Givens rotation*. (Why rotation? What is the angle of rotation?) Then let A be a square matrix of size $n \times n$. Multiplying A from the left by a suitable Householder reflector H gives us

$$HA = \begin{pmatrix} \times & \times & \dots & \times \\ 0 & \times & \dots & \times \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \times & \dots & \times \end{pmatrix}$$

1

Show that the same effect can be obtained using n-1 Givens rotations. Which method is more efficient?

5. Consider the polynomial $p(z) = c_0 + c_1 z + ... + c_k z^k$. For a square matrix we can in the same way define $p(A) = c_0 + c_1 A + ... + c_k A^k$. How many flops is needed to evaluate p(z) by the obvious method? How many flops is needed using the *Horner's rule*:

$$p(z) = c_0 + z (c_1 + z (c_2 + \dots + z (c_{k-1} + c_k z) \dots))$$

How many flops is needed to evaluate p(A)? Show that now the Horner's rule does not really help. Why?

Homework

Program Strassen's algorithm with Matlab. Consider only the case where the matrices are of size $2^k \times 2^k$. Compare the performance with the standard algorithm. The time required can be measured with tic, toc, etime or cputime.