Wavelets, spring 2002

Problem set 3

- 1. Choose a polynomial p such that $\psi(t) = p(t)e^{-t^2}$ is a wavelet with 3 vanishing moments. Is ψ rapidly decreasing? Is $\psi \in \mathcal{S}(\mathbb{R})$? This problem is most conveniently done with *Maple*.
- 2. Let u = (1,0), v = (0,1) and w = (1,1). Show that $\{u, v, w\}$ is a frame in \mathbb{R}^2 and compute the frame bounds.
- 3. Consider the Haar wavelet system:

$$\psi(t) = \begin{cases} 1 , & 0 < t < 1/2 \\ -1 , & 1/2 < t < 1 \\ 0 , & otherwise \end{cases} \qquad \qquad \psi_{j,k}(t) = 2^{j/2} \psi(2^j t - k)$$

Then given some $f \in L^2(\mathbb{R})$ we may compute the wavelet coefficients $c_{j,k} = \langle f, \psi_{j,k} \rangle$, and we have the reconstruction formula

$$f(t) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} c_{j,k} \psi_{j,k}(t)$$

- show that $\{\psi_{j,k}\}_{j,k\in\mathbb{Z}}$ is an orthonormal set
- show that

$$||f||_{2}^{2} = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} |c_{j,k}|^{2}$$

• let us define f by

$$f(t) = \begin{cases} 2t , & 0 < t \le 1\\ 2 , & 1 < t \le 4\\ 6 - t , & 4 < t < 6\\ 0 , & otherwise \end{cases}$$

Compute the wavelet coefficients of f. How do the coefficients behave when $j \to \infty$? How do the coefficients behave when $j \to -\infty$? To compress the signal one discards all the coefficients that are smaller that 10^{-5} . How many coefficients remain? You don't need to compute the exact number, but just to give a reasonble upper bound. This is for those who like to program. The previous problem can be done algorithmically:

INPUT: function f and its support $[t_0, t_1]$, tolerance ε OUTPUT: the wavelet coefficients which are bigger than tolerance

To proceed, do the following:

- first estimate what is the coarsest level you need. In other words we need j_0 such that $|c_{j,k}| < \varepsilon$ for all $j < j_0$.
- Then starting with level j_0 , compute the relevant coefficients. The program might look like this:

j:=j0 repeat compute k_0 and k_1 such that $c_{j,k}$ can be nonzero only for $k_0 \le k \le k_1$ compute $c_{j,k}$ for $k_0 \le k \le k_1$ discard values for which $|c_{j,k}| < \varepsilon$ let n be the number of coefficients that remain j:=j+1 until n = 0

• Think about the stopping criterium. Does it always give reasonable results? What other criteria could be used? Take different functions and examine how much compression you get with different tolerances.