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1 Some function spaces
Let V be a vector space and let n : V → R. The map n is a norm if the
following conditions are satis�ed:

1. n(x) ≥ 0 for all x ∈ V .

2. n(cx) = |c|n(x) for all x ∈ V and all c ∈ C.

3. n(x + y) ≤ n(x) + n(y) for all x, y ∈ V . This is called the triangle
inequality.

4. n(x) = 0 only if x = 0.

For example if V = Cn, then n(x) = max1≤i≤n |xi| is a norm.
Let us consider the following vector spaces.

De�nition 1.1

Cn(R) =
{
f : R→ C | f, f ′, . . . , f (n) continuous

}
If all derivatives of f are continuous we say that f is smooth and the space
of smooth functions is denoted by C∞(R).

The bigger the parameter n, the more regular f is. Of course instead of
Cn(R) we may consider the space Cn([t0, t1]) where functions are de�ned or
analysed only in the interval [t0, t1].
So a statement like f ∈ Cn(R) for some n gives information about the global
regularity of the signal. We would like to measure also local regularity, and
also to re�ne the notion of regularity.

Example 1.1 Let f(t) =
√
t for t ≥ 0 and f(t) = 0 for t < 0. Now obviously

f ∈ C0(R), but f 6∈ C1(R) because the derivative is not continuous at the
origin. However, f is anyway more than just continuous at the origin.

Let us �rst �rst give a pointwise de�nition.

De�nition 1.2 Let 0 < α < 1; we say that f is α�Lipschitz at point t0 if
there is a constant c such that

|f(t)− f(t0)| ≤ c|t− t0|α
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for all t su�ciently close to t0. Let n be an integer and let f have n continuous
derivatives at t0. We say that f is n + α�Lipschitz at point t0 if there is a
constant c such that

|f (n)(t)− f (n)(t0)| ≤ c|t− t0|α

We may also say that f has a Lipschitz number n+ α at t0.

The function in the previous example is evidently 1/2�Lipschitz and f(t) =
|t|3/2 is 3/2�Lipschitz at the origin.1

De�nition 1.3 Let 0 < α < 1 and put

Cα(R) =
{
f : R→ C | f is α�Lipschitz for all t

}
Cn+α(R) =

{
f : R→ C | f ∈ Cn(R) and f (n) ∈ Cα(R)

}
2 Continuous wavelet transform
De�nition 2.1 A wavelet is a function ψ : R→ R such that

(i) ψ ∈ L1(R) ∩ L2(R)

(ii)
∫∞
−∞ ψ(t)dt = 0

This implies that ψ̂ (the Fourier transform of ψ) is continuous, and that
ψ̂(0) = 0, and hence

cψ =
∫ ∞

0

|ψ̂(ω)|2

ω
dω <∞

Recall that a signal, for purposes of this course, is a function in L2(R).

De�nition 2.2 A (continuous) wavelet transform of a signal f is

Wf (a, b) = 〈f, ψa,b〉 =
∫ ∞
−∞

f(t)ψa,b(t)dt

where a > 0, b ∈ R, ψa,b(t) = a−1/2ψ
(
(t− b)/a

)
and ψ is a wavelet.

1De�ning Lipschitz regularity for integer values makes also sense. The resulting function
spaces are called Zygmund classes. However, this leads to some technical complications
which we prefer to avoid.
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Note that the word continuous doesn't imply that any of the functions were
continuous. It refers to the fact that the parameters a and b vary continuously.
One easily checks that ||ψa,b||2 = ||ψ||2. Then by Cauchy inequality we get

|Wf (a, b)| = |〈f, ψa,b〉| ≤ ||f ||2||ψa,b||2 = ||f ||2||ψ||2

Hence Wf is a bounded function.

Theorem 2.1 If ψ is a wavelet, then we have the reconstruction formula:

f(t) =
1
cψ

∫ ∞
0

∫ ∞
−∞

Wf (a, b)ψa,b(t)
da db

a2

and the energy formula:

cψ

∫ ∞
−∞
|f(t)|2dt =

∫ ∞
0

∫ ∞
−∞
|Wf (a, b)|2

da db

a2
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