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3 Regularity and singularity

To be able to e�ectively analyse the singularities of the function/signal we
need to put some more conditions on the wavelet.

De�nition 3.1 A function f is said to be rapidly decreasing (or to have
fast decay) if for all n there are positive constants Cn such that

|f(t)| ≤ Cn
1 + |t|n

The space of functions which are in C∞(R) and whose all derivatives are
rapidly decreasing is denoted by S(R).

For example all continuous functions with compact support are rapidly de-
crasing. Also f1(t) = e−|t| and f2(t) = e−t

2
are rapidly decrasing. In addition

f2 ∈ S(R).

De�nition 3.2 A function f is said to have n vanishing moments if∫ ∞
−∞

tkf(t)dt = 0 0 ≤ k < n

Note that a wavelet has always at least one vanishing moment. Note also
that by properties of the Fourier transform this is equivalent to

f̂ (k)(0) = 0 0 ≤ k < n

Hence one way to produce functions with vanishing moments is to start with
f̂(ω) = ωng(ω) where g is some suitable function, and then computing the
inverse Fourier transform of f̂ .
To measure the regularity of the signal we need wavelets with vanishing
moments. Let us also recall that a signal is always a function in L2(R). So
let us suppose that ψ is a wavelet such that

• ψ ∈ Cn(R)

• ψ has n vanishing moments

• ψ and its derivatives up to order n are rapidly decreasing
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Further let k be an integer, 0 < α < 1 and k + α < n. Then we have the
following theorem

Theorem 3.1 If a signal f is k + α�Lipschitz in the interval [t0, t1], then
there is a constant C such that

|Wf (a, b)| ≤ Cak+α+1/2 for all t0 ≤ b ≤ t1 and a > 0

Conversely if f is bounded and the above inequality is satis�ed, then f is
k + α�Lipschitz in the interval [t0 + ε, t1 − ε] for all ε > 0.

So we see that for the purposes of analysis it would nice to have wavelets
many vanishing moments and many continuous derivatives. On the other
hand it is most convenient to work with wavelets with compact support,
in other words timelimited wavelets. 1. The following result indicates some
limitations.

Theorem 3.2 If the wavelet ψ has a compact support, then all its moments
cannot vanish. On the other hand there is a wavelet ψ ∈ S(R) such that all
its moments vanish.

4 Some preparations

Before we can start discussing discrete wavelet transform , let us review some
basic notions.

De�nition 4.1 Let c = (. . . , c−1, c0, c1, c2, . . . ). Then c belongs to the space
l2(Z) if

∞∑
k=−∞

|ck|2 <∞

The norm is ||c||2 =
(∑∞

−∞ |ck|2
)1/2

and the inner product is 〈c, d〉 =
∑∞

k=−∞ ckd̄k.
c belongs to the space l1(Z) if

∞∑
k=−∞

|ck| <∞

The norm is ||c||1 =
∑∞
−∞ |ck|.

1Recall that in signal processing literature a signal with compact support is called time

limited, and a signal whose Fourier transform has compact support is called band limited
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So both L2(R) and l2(Z) are inner product spaces, and hence in both cases
we say that two elements are orthogonal if their inner product is zero. In fact
they are both Hilbert spaces .

De�nition 4.2 Let V be a normed vector space and fj a sequence of ele-
ments of V . We say that fj converges to an element of f ∈ V if

||f − fj|| → 0 when j →∞

fj is called a Cauchy sequence if for any ε > 0 there is n such that

||fk − fj|| < ε when j , k > n

If all Cauchy sequences converge, the space is said to be complete.

It is rather straightforward to show that if fj converges it must be a Cauchy
sequence. However, the converse is not always true.
One usually says that a complete normed space is a Banach space and a
complete inner product space is a Hilbert space . Recall that inner product
space is a normed space where the norm is given by inner product: ||f || =√
〈f, f〉.

Theorem 4.1 The spaces are L2(R), l2(Z), L1(R) and l1(Z) are complete.

In signal analysis one wants to represent or decompose a signal using some
�atoms� or basis functions. A familiar example is Fourier series where the
basis functions are sines and cosines. More generally for a given signal f we
may try to represent it as

f(t) =
∞∑

k=−∞

ckϕk(t)

where ϕk are given functions and the constants ck are to be determined. In
the follwing we will for simplicty consider only Hilbert spaces. Recall that
in continuous wavelet transform we get the information about the signal by
evaluating inner products. Similarly in the discrete case let us consider a
collection {ϕk} ∈ V where V is a Hilbert space. Then for any f ∈ V we can
compute the coe�cients ck = 〈f, ϕk〉. But how useful the cone�cients ck are?
The following de�nition has been found appropriate.

De�nition 4.3 Let V be a Hilbert space. A collection {ϕk} is called a frame
if there are positive constants A and B such that

A||f ||2 ≤
∞∑

k=−∞

|〈f, ϕk〉|2 ≤ B||f ||2

3



The constants A and B are called frame bounds and the frame is tight if
A = B.
We may interprete the above inequalities as follows. Let ck = 〈f, ϕk〉. Then
we can write A||f ||22 ≤ ||c||22 ≤ B||f ||22, which implies that c cannot big is f is
small (B <∞) and on the other hand c cannot be small if f is big (A > 0).2

Note that the frame is not necessarily linearly independent. A closely related
notion is a basis.

De�nition 4.4 Let V be a Hilbert space. A collection {ϕk} is called a basis
if for all f ∈ V there are unique constants ck such that

f =
∞∑

k=−∞

ckϕk

A basis is which is also a frame is called Riesz basis. Finally the basis is
orthogonal if 〈ϕn, ϕk〉 = 0 for n 6= k and orthonormal if in addition ||ϕk|| = 1
for all k.

Now one can show that if the frame is linearly independent, then it is a Riesz
basis. Hence we have the following implications:
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5 Discrete wavelet transform

Let us de�ne
cj,k = Wf (2

−j, 2−jk) = 〈f, ψj,k〉

where ψj,k(t) = 2j/2ψ(2jt− k) and j, k ∈ Z.
A minimal requirement for the wavelet is the following. Suppose that cj,k
are wavelet coe�cients of f and dj,k are wavelet coe�cients of g. We want
that the coe�cients characterize the signal completely in the sense that if

2We will not use frames in the following, but they are quite important in some appli-

cations of wavelets.
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cj,k = dj,k for all j and k then it must follow that f = g. This is the same
as requiring that the set {ψj,k} spans L2(R). However, for practical purposes
we must also require that the set {ψj,k} is a frame. This is because �nally in
practise all computations must be done numerically, and the frame bounds
guarantee that the computations are numerically stable.
However, since we will not consider frames anymore, we will directly take up
the case where the set {ψj,k} is linearly independent; in other words

the set {ψj,k} should be a Riesz basis

The best case is evidently:

the set {ψj,k} is an orthonormal basis

Now it's not obvious how to �nd ψ such that {ψj,k} is an orthonormal basis.
In fact it's not so evident if such ψ exists at all. However, it turns out that
one can produce such ψ's with the help of multiresolution analysis .
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