
Wavelets, spring 2002

6 Multiresolution analysis

By multiresolution analysis (MRA) we mean the following:

Definition 6.1. MRA in L2(R) is a collection of subspaces Vj ⊂ L2(R) and
a scaling function ϕ ∈ L2(R) such that

(1) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .

(2) f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1

(3) ∩j∈ZVj = 0

(4) closure
(
∪j∈Z Vj

)
= L2(R)

(5) {ϕ(t− k)}k∈Z is an orthonormal basis of V0.

Let us further set ϕj,k(t) = 2j/2ϕ(2jt− k). One can then immediately check
that {ϕj,k}k∈Z is an orthonormal basis of Vj.
Then we can define a sequence of space Wj as follows: Wj is the orthogonal
complement of Vj in Vj+1. We denote this by Vj+1 = Vj ⊕Wj.

Definition 6.2. A wavelet ψ associated to MRA is a function such that
{ψ(t− k)}k∈Z is an orthonormal basis of W0.

Again we set ψj,k(t) = 2j/2ψ(2jt−k) and check that {ϕj,k}k∈Z is an orthonor-
mal basis of Wj. Let us also recall that we will always suppose that

ϕ ∈L1(R) ∩ L2(R) and ϕ̂(0) =
∫ ∞
−∞

ϕ(t)dt = 1

ψ ∈L1(R) ∩ L2(R) and ψ̂(0) =
∫ ∞
−∞

ψ(t)dt = 0

This implies in particular that the Fourier transforms ϕ̂ and ψ̂ are continuous.
Now we have defined everything in terms of subspaces Vj and Wj but at this
point it’s not clear if there really exist some functions ϕ and ψ which satisfy
the given conditions. So how could we find such functions?
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By property (2) and (5) of Definition 6.1 there must be constants hk such
that

1
2ϕ(t/2) =

∞∑
k=−∞

hkϕ(t− k) (6.1)

Taking Fourier transforms we get

ϕ̂(2ω) =
∞∑

k=−∞

hkϕ̂(ω)e−ikω =
( ∞∑
k=−∞

hke
−ikω

)
ϕ̂(ω) = m0(ω)ϕ̂(ω) (6.2)

Since ϕ̂(0) 6= 0 this implies that m0(0) =
∑∞

k=−∞ hk = 1. Similarly there
must be constants gk such that

1
2ψ(t/2) =

∞∑
k=−∞

gkϕ(t− k) (6.3)

Again taking Fourier transforms we get

ψ̂(2ω) =
( ∞∑
k=−∞

gke
−ikω

)
ϕ̂(ω) = m1(ω)ϕ̂(ω) (6.4)

Since ψ̂(0) = 0 this implies that m1(0) =
∑∞

k=−∞ gk = 0. In the following we
will always suppose that

h ∈l1(Z) ∩ l2(Z) and m0(0) =
∞∑

k=−∞

hk = 1

g ∈l1(Z) ∩ l2(Z) and m1(0) =
∞∑

k=−∞

gk = 0

(6.5)

From this it follows that m0 and m1 are continuous.

Definition 6.3. h is the (low pass) filter associated to ϕ and m0 is the cor-
responding transfer function. Similarly g is the (high pass) filter associated
to ψ and m1 is its transfer function.

Now we can apply the equation (6.2) iteratively:

ϕ̂(ω) = m0(ω/2)ϕ̂(ω/2) = m0(ω/2)m0(ω/4)ϕ̂(ω/4) = ϕ̂(2−kω)
k∏
j=1

m0(2−jω)
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But since ϕ̂ and m0 are continuous, and ϕ̂(0) = m0(0) = 1, we can hope that
it’s possible to consider the limit k →∞ and define

ϕ̂(ω) =
∞∏
j=1

m0(2−jω) (6.6)

Hence we might proceed as follows:

• choose an appropriate transfer function m0

• compute ϕ̂ by (6.6)

• compute ϕ by taking inverse Fourier transform of ϕ̂

• choose an appropriate filter g

• compute ψ by (6.3)

We could also do:

• choose an appropriate filter h

• compute ϕ by solving iteratively (6.1)

• choose an appropriate filter g

• compute ψ by (6.3)

But how to choose filters h and g, or equivalently the corresponding transfer
functions m0 and m1? It is clear that if we just have the conditions (6.5) and
follow the procedure above, the result will not be MRA.

6.1 ϕ, h and m0

Definition 6.4. A shift Sn on sequences is defined by

y = Snx ⇔ yk = xk−n

So if n > 0 (respectively n < 0), x is shifted to the right or delayed (resp. to
the left).
Let us then suppose that ϕ verifies all the properties listed in Definition 6.1.
What does this imply about h and m0?
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Lemma 6.1. Let ϕ be a scaling function and define

a(ω) =
∞∑

n=−∞

|ϕ̂(ω + 2πn)|2

Then a(ω) = 1 for all ω.

Proof. Note first that a is 2π–periodic. Hence it has a Fourier series a(ω) =∑∞
k=−∞ cke

ikω where

ck =
1

2π

∫ 2π

0
a(ω)e−ikωdω =

1
2π

∫ 2π

0

∞∑
n=−∞

|ϕ̂(ω + 2πn)|2e−ikωdω

=
1

2π

∞∑
n=−∞

∫ 2π

0
|ϕ̂(ω + 2πn)|2e−ikωdω =

1
2π

∫ ∞
−∞
|ϕ̂(ω)|2e−ikωdω

But by Parseval’s theorem

1
2π

∫ ∞
−∞
|ϕ̂(ω)|2e−ikωdω =

1
2π

∫ ∞
−∞

ϕ̂(ω)e−ikωϕ̂(ω)dω =∫ ∞
−∞

ϕ(t− k)ϕ(t)dt = 0

where the final equality follows from the orthogonality of the translates of ϕ
(property (5) in Definition 6.1).

With this technical lemma we get

Theorem 6.1. If ϕ is a scaling function, then

|m0(ω)|2 + |m0(ω + π)|2 = 1

In particular we see that m0(π) = 0, so that it is really a low pass filter at
least in a weak sense, and |m0(ω)| ≤ 1 for all ω.

Proof.

1 = a(2ω) =
∞∑

n=−∞

|ϕ̂(2ω + 2πn)|2 =
∞∑

n=−∞

|m0(ω + πn)|2|ϕ̂(ω + πn)|2

=
∞∑

n=−∞

|m0(ω + 2πn)|2|ϕ̂(ω + 2πn)|2 +
∞∑

n=−∞

|m0(ω + π + 2πn)|2|ϕ̂(ω + π + 2πn)|2

=|m0(ω)|2
∞∑

n=−∞

|ϕ̂(ω + 2πn)|2 + |m0(ω + π)|2
∞∑

n=−∞

|ϕ̂(ω + π + 2πn)|2

=|m0(ω)|2a(ω) + |m0(ω + π)|2a(ω + π) = |m0(ω)|2 + |m0(ω + π)|2
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Theorem 6.2. If ϕ is a scaling function, then

〈h, S2nh〉 =

{
1/2 , n = 0
0 , n 6= 0

In particular {S2nh}n∈Z is an orthogonal set in l2(Z).

Proof.

ϕ(t) = 2
∞∑

k=−∞

hkϕ(2t− k)

ϕ(t− n) = 2
∞∑

k=−∞

hkϕ(2t− 2n− k) = 2
∞∑

k=−∞

hk−2nϕ(2t− k)

Hence

〈ϕ(t), ϕ(t− n)〉 = 4〈
∞∑

j=−∞

hjϕ(2t− j),
∞∑

k=−∞

hk−2nϕ(2t− k)〉 =

4
∞∑

j=−∞

∞∑
k=−∞

hjhk−2n〈ϕ(2t− j), ϕ(2t− k)〉 = 2
∞∑

k=−∞

hkhk−2n = 2〈h, S2nh〉

The result then again follows from property (5) in Definition 6.1.

6.2 ψ, g and m1

We can now proceed similarly as above. Note that the essential property
we used was the orthogonality of the translates ϕ(t − k). But if ψ is the
associated wavelet (Definition 6.2), then its translates are also orthogonal.
Hence we can immediately state

Theorem 6.3. If ψ is a wavelet associated to a MRA, then

〈g, S2ng〉 =

{
1/2 , n = 0
0 , n 6= 0

|m1(ω)|2 + |m1(ω + π)|2 = 1

So at this point the only difference between h and g is that

m0(0) =
∞∑

k=−∞

hk = 1 =
∞∑

k=−∞

(−1)kgk = m1(π)

m0(π) =
∞∑

k=−∞

(−1)khk = 0 =
∞∑

k=−∞

gk = m1(0)
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So h must be a low pass filter and g must be a high pass filter. But there
must be much closer connection between wavelets and scaling functions and
the corresponding filters.

6.3 Connection

We haven’t yet used the fact that ϕ(t−k) and ψ(t−n) should be orthogonal
to each other for any k and n. Of course it’s sufficient just to consider the
case n = 0 (why?). Hence we require that

〈ϕ(t− k), ψ(t)〉 = 0

for all k. Let us again first state a technical result.

Lemma 6.2. Let ϕ be a scaling function, ψ the associated wavelet and define

b(ω) =
∞∑

n=−∞

ϕ̂(ω + 2πn)ψ̂(ω + 2πn)

Then b(ω) = 0 for all ω.

Proof. Note again that b is 2π–periodic. Hence it has a Fourier series b(ω) =∑∞
k=−∞ cke

ikω where

ck =
1

2π

∫ 2π

0
b(ω)e−ikωdω =

1
2π

∫ 2π

0

∞∑
n=−∞

ϕ̂(ω + 2πn)ψ̂(ω + 2πn)e−ikωdω

=
1

2π

∞∑
n=−∞

∫ 2π

0
ϕ̂(ω + 2πn)ψ̂(ω + 2πn)e−ikωdω =

1
2π

∫ ∞
−∞

ϕ̂(ω)ψ̂(ω)e−ikωdω

But by Parseval’s theorem

1
2π

∫ ∞
−∞

ϕ̂(ω)ψ̂(ω)e−ikωdω =
1

2π

∫ ∞
−∞

ϕ̂(ω)e−ikωψ̂(ω)dω =∫ ∞
−∞

ϕ(t− k)ψ(t)dt = 0

where the final equality follows from the orthogonality of the subspaces V0

and W0 (Definitions 6.1 and 6.2).

Theorem 6.4. Let ϕ be a scaling function and ψ the associated wavelet.
Then

(i) 〈h, S2ng〉 = 0 for all n
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(ii) m0(ω)m1(ω) +m0(ω + π)m1(ω + π) = 0

Proof.

ϕ(t) = 2
∞∑

k=−∞

hkϕ(2t− k)

ψ(t− n) = 2
∞∑

k=−∞

gkϕ(2t− 2n− k) = 2
∞∑

k=−∞

gk−2nϕ(2t− k)

Hence

〈ϕ(t), ψ(t− n)〉 = 4
〈 ∞∑
j=−∞

hjϕ(2t− j),
∞∑

k=−∞

gk−2nϕ(2t− k)
〉

=

4
∞∑

j=−∞

∞∑
k=−∞

hjgk−2n〈ϕ(2t− j), ϕ(2t− k)〉 = 2
∞∑

k=−∞

hkgk−2n = 2〈h, S2ng〉

The first result then follows from the orthogonality of subspaces V0 and W0.
To prove the second statement we use Lemmas 6.1 and 6.2, and the fact that
ψ̂(2ω) = m1(ω)ϕ̂(ω).

0 = b(2ω) =
∞∑

n=−∞

ϕ̂(2ω + 2πn)ψ̂(2ω + 2πn) =
∞∑

n=−∞

m0(ω + πn)ϕ̂(ω + πn)m1(ω + πn)ϕ̂(ω + πn)

=
∞∑

n=−∞

m0(ω + 2πn)m1(ω + 2πn)|ϕ̂(ω + 2πn)|2 +

∞∑
n=−∞

m0(ω + π + 2πn)m1(ω + π + 2πn)|ϕ̂(ω + π + 2πn)|2

=m0(ω)m1(ω)
∞∑

n=−∞

|ϕ̂(ω + 2πn)|2 +m0(ω + π)m1(ω + π)
∞∑

n=−∞

|ϕ̂(ω + π + 2πn)|2

=m0(ω)m1(ω)a(ω) +m0(ω + π)m1(ω + π)a(ω + π)

=m0(ω)m1(ω) +m0(ω + π)m1(ω + π)

We have seen that {S2nh}n∈Z and {S2ng}n∈Z are orthogonal sets in l2(Z).
One can show that together they span the whole l2(Z). More precisely
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Theorem 6.5. Let ϕ be a scaling function and ψ the associated wavelet.
Then

{S2nh}n∈Z ∪ {S2ng}n∈Z

is an orthognal basis in l2(Z).

It remains to find filters/transfer functions which satisfy the conditions which
we have obtained. The first step is: given h and m0, what are the correspond-
ing g and m1. Now it turns out that there is a canonical choice:

gk = (−1)kh1−k m1(ω) = −e−iωm0(ω + π) (6.7)

One can easily check that with this choice, the conditions of Theorem 6.4 are
satisfied. In the following we will always suppose that h, g, m0 and m1 are
related this way. Note in particular that this implies that

|m0(ω)|2 + |m1(ω)|2 = 1
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