Wavelets, spring 2002

6 Multiresolution analysis

By multiresolution analysis (MRA) we mean the following:

Definition 6.1. MRA in $L^2(\mathbb{R})$ is a collection of subspaces $V_j \subset L^2(\mathbb{R})$ and a scaling function $\varphi \in L^2(\mathbb{R})$ such that

 $(1) \cdots \subset V_{-1} \subset V_0 \subset V_1 \subset \ldots$

$$
(2) f(t) \in V_j \Leftrightarrow f(2t) \in V_{j+1}
$$

- (3) $\bigcap_{i\in\mathbb{Z}}V_i=0$
- (4) $closure(\cup_{j\in \mathbb{Z}} V_j) = L^2(\mathbb{R})$
- (5) $\{\varphi(t-k)\}_{k\in\mathbb{Z}}$ is an orthonormal basis of V_0 .

Let us further set $\varphi_{j,k}(t) = 2^{j/2} \varphi(2^{j}t - k)$. One can then immediately check that $\{\varphi_{j,k}\}_{k\in\mathbb{Z}}$ is an orthonormal basis of V_j .

Then we can define a sequence of space W_j as follows: W_j is the orthogonal complement of V_j in V_{j+1} . We denote this by $V_{j+1} = V_j \oplus W_j$.

Definition 6.2. A wavelet ψ associated to MRA is a function such that $\{\psi(t-k)\}_{k\in\mathbb{Z}}$ is an orthonormal basis of W_0 .

Again we set $\psi_{j,k}(t) = 2^{j/2}\psi(2^{j}t - k)$ and check that $\{\varphi_{j,k}\}_{k \in \mathbb{Z}}$ is an orthonormal basis of W_j . Let us also recall that we will always suppose that

$$
\varphi \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})
$$
 and $\hat{\varphi}(0) = \int_{-\infty}^{\infty} \varphi(t)dt = 1$
\n $\psi \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ and $\hat{\psi}(0) = \int_{-\infty}^{\infty} \psi(t)dt = 0$

This implies in particular that the Fourier transforms $\hat{\varphi}$ and $\hat{\psi}$ are continuous. Now we have defined everything in terms of subspaces V_i and W_j but at this point it's not clear if there really exist some functions φ and ψ which satisfy the given conditions. So how could we find such functions?

By property (2) and (5) of Definition 6.1 there must be constants h_k such that

$$
\frac{1}{2}\varphi(t/2) = \sum_{k=-\infty}^{\infty} h_k \varphi(t-k)
$$
\n(6.1)

Taking Fourier transforms we get

$$
\hat{\varphi}(2\omega) = \sum_{k=-\infty}^{\infty} h_k \hat{\varphi}(\omega) e^{-ik\omega} = \left(\sum_{k=-\infty}^{\infty} h_k e^{-ik\omega}\right) \hat{\varphi}(\omega) = m_0(\omega) \hat{\varphi}(\omega) \quad (6.2)
$$

Since $\hat{\varphi}(0) \neq 0$ this implies that $m_0(0) = \sum_{k=-\infty}^{\infty} h_k = 1$. Similarly there must be constants g_k such that

$$
\frac{1}{2}\psi(t/2) = \sum_{k=-\infty}^{\infty} g_k \varphi(t-k)
$$
\n(6.3)

Again taking Fourier transforms we get

$$
\hat{\psi}(2\omega) = \left(\sum_{k=-\infty}^{\infty} g_k e^{-ik\omega}\right) \hat{\varphi}(\omega) = m_1(\omega) \hat{\varphi}(\omega)
$$
(6.4)

Since $\hat{\psi}(0) = 0$ this implies that $m_1(0) = \sum_{k=-\infty}^{\infty} g_k = 0$. In the following we will always suppose that

$$
h \in l^{1}(\mathbb{Z}) \cap l^{2}(\mathbb{Z}) \quad \text{and} \quad m_{0}(0) = \sum_{k=-\infty}^{\infty} h_{k} = 1
$$
\n
$$
g \in l^{1}(\mathbb{Z}) \cap l^{2}(\mathbb{Z}) \quad \text{and} \quad m_{1}(0) = \sum_{k=-\infty}^{\infty} g_{k} = 0
$$
\n(6.5)

From this it follows that m_0 and m_1 are continuous.

Definition 6.3. h is the (low pass) filter associated to φ and m_0 is the corresponding transfer function. Similarly g is the (high pass) filter associated to ψ and m_1 is its transfer function.

Now we can apply the equation (6.2) iteratively:

$$
\hat{\varphi}(\omega) = m_0(\omega/2)\hat{\varphi}(\omega/2) = m_0(\omega/2)m_0(\omega/4)\hat{\varphi}(\omega/4) = \hat{\varphi}(2^{-k}\omega)\prod_{j=1}^k m_0(2^{-j}\omega)
$$

But since $\hat{\varphi}$ and m_0 are continuous, and $\hat{\varphi}(0) = m_0(0) = 1$, we can hope that it's possible to consider the limit $k \to \infty$ and *define*

$$
\hat{\varphi}(\omega) = \prod_{j=1}^{\infty} m_0(2^{-j}\omega)
$$
\n(6.6)

Hence we might proceed as follows:

- choose an appropriate transfer function m_0
- compute $\hat{\varphi}$ by (6.6)
- compute φ by taking inverse Fourier transform of $\hat{\varphi}$
- choose an appropriate filter q
- compute ψ by (6.3)

We could also do:

- choose an appropriate filter h
- compute φ by solving iteratively (6.1)
- choose an appropriate filter g
- compute ψ by (6.3)

But how to choose filters h and g, or equivalently the corresponding transfer functions m_0 and m_1 ? It is clear that if we just have the conditions (6.5) and follow the procedure above, the result will not be MRA.

6.1 φ , h and m_0

Definition 6.4. A shift S_n on sequences is defined by

$$
y = S_n x \quad \Leftrightarrow \quad y_k = x_{k-n}
$$

So if $n > 0$ (respectively $n < 0$), x is shifted to the right or delayed (resp. to the left).

Let us then suppose that φ verifies all the properties listed in Definition 6.1. What does this imply about h and m_0 ?

Lemma 6.1. Let φ be a scaling function and define

$$
a(\omega) = \sum_{n=-\infty}^{\infty} |\hat{\varphi}(\omega + 2\pi n)|^2
$$

Then $a(\omega) = 1$ for all ω .

 $\sum_{k=-\infty}^{\infty} c_k e^{ik\omega}$ where *Proof.* Note first that a is 2π -periodic. Hence it has a Fourier series $a(\omega)$ =

$$
c_k = \frac{1}{2\pi} \int_0^{2\pi} a(\omega)e^{-ik\omega} d\omega = \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=-\infty}^{\infty} |\hat{\varphi}(\omega + 2\pi n)|^2 e^{-ik\omega} d\omega
$$

$$
= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_0^{2\pi} |\hat{\varphi}(\omega + 2\pi n)|^2 e^{-ik\omega} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{\varphi}(\omega)|^2 e^{-ik\omega} d\omega
$$

But by Parseval's theorem

$$
\frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{\varphi}(\omega)|^2 e^{-ik\omega} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\varphi}(\omega) e^{-ik\omega} \overline{\hat{\varphi}(\omega)} d\omega =
$$

$$
\int_{-\infty}^{\infty} \varphi(t - k) \varphi(t) dt = 0
$$

where the final equality follows from the orthogonality of the translates of φ (property (5) in Definition 6.1). \Box

With this technical lemma we get

Theorem 6.1. If φ is a scaling function, then

$$
|m_0(\omega)|^2 + |m_0(\omega + \pi)|^2 = 1
$$

In particular we see that $m_0(\pi) = 0$, so that it is really a low pass filter at least in a weak sense, and $|m_0(\omega)| \leq 1$ for all ω .

Proof.

$$
1 = a(2\omega) = \sum_{n=-\infty}^{\infty} |\hat{\varphi}(2\omega + 2\pi n)|^2 = \sum_{n=-\infty}^{\infty} |m_0(\omega + \pi n)|^2 |\hat{\varphi}(\omega + \pi n)|^2
$$

\n
$$
= \sum_{n=-\infty}^{\infty} |m_0(\omega + 2\pi n)|^2 |\hat{\varphi}(\omega + 2\pi n)|^2 + \sum_{n=-\infty}^{\infty} |m_0(\omega + \pi + 2\pi n)|^2 |\hat{\varphi}(\omega + \pi + 2\pi n)|^2
$$

\n
$$
= |m_0(\omega)|^2 \sum_{n=-\infty}^{\infty} |\hat{\varphi}(\omega + 2\pi n)|^2 + |m_0(\omega + \pi)|^2 \sum_{n=-\infty}^{\infty} |\hat{\varphi}(\omega + \pi + 2\pi n)|^2
$$

\n
$$
= |m_0(\omega)|^2 a(\omega) + |m_0(\omega + \pi)|^2 a(\omega + \pi) = |m_0(\omega)|^2 + |m_0(\omega + \pi)|^2
$$

Theorem 6.2. If φ is a scaling function, then

$$
\langle h, S_{2n} h \rangle = \begin{cases} 1/2 , & n = 0 \\ 0 , & n \neq 0 \end{cases}
$$

In particular $\{S_{2n}h\}_{n\in\mathbb{Z}}$ is an orthogonal set in $l^2(\mathbb{Z})$. Proof.

$$
\varphi(t) = 2 \sum_{k=-\infty}^{\infty} h_k \varphi(2t - k)
$$

$$
\varphi(t - n) = 2 \sum_{k=-\infty}^{\infty} h_k \varphi(2t - 2n - k) = 2 \sum_{k=-\infty}^{\infty} h_{k-2n} \varphi(2t - k)
$$

Hence

$$
\langle \varphi(t), \varphi(t-n) \rangle = 4 \langle \sum_{j=-\infty}^{\infty} h_j \varphi(2t-j), \sum_{k=-\infty}^{\infty} h_{k-2n} \varphi(2t-k) \rangle =
$$

$$
4 \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h_j h_{k-2n} \langle \varphi(2t-j), \varphi(2t-k) \rangle = 2 \sum_{k=-\infty}^{\infty} h_k h_{k-2n} = 2 \langle h, S_{2n} h \rangle
$$

The result then again follows from property (5) in Definition 6.1.

\Box

6.2 ψ , g and m_1

We can now proceed similarly as above. Note that the essential property we used was the orthogonality of the translates $\varphi(t - k)$. But if ψ is the associated wavelet (Definition 6.2), then its translates are also orthogonal. Hence we can immediately state

Theorem 6.3. If ψ is a wavelet associated to a MRA, then

$$
\langle g, S_{2n}g \rangle = \begin{cases} 1/2, & n = 0 \\ 0, & n \neq 0 \end{cases}
$$

$$
|m_1(\omega)|^2 + |m_1(\omega + \pi)|^2 = 1
$$

So at this point the only difference between h and g is that

$$
m_0(0) = \sum_{k=-\infty}^{\infty} h_k = 1 = \sum_{k=-\infty}^{\infty} (-1)^k g_k = m_1(\pi)
$$

$$
m_0(\pi) = \sum_{k=-\infty}^{\infty} (-1)^k h_k = 0 = \sum_{k=-\infty}^{\infty} g_k = m_1(0)
$$

So h must be a low pass filter and g must be a high pass filter. But there must be much closer connection between wavelets and scaling functions and the corresponding filters.

6.3 Connection

We haven't yet used the fact that $\varphi(t-k)$ and $\psi(t-n)$ should be orthogonal to each other for any k and n . Of course it's sufficient just to consider the case $n = 0$ (why?). Hence we require that

$$
\langle \varphi(t-k), \psi(t) \rangle = 0
$$

for all k. Let us again first state a technical result.

Lemma 6.2. Let φ be a scaling function, ψ the associated wavelet and define

$$
b(\omega) = \sum_{n=-\infty}^{\infty} \hat{\varphi}(\omega + 2\pi n) \overline{\hat{\psi}(\omega + 2\pi n)}
$$

Then $b(\omega) = 0$ for all ω .

 $\sum_{k=-\infty}^{\infty} c_k e^{ik\omega}$ where *Proof.* Note again that b is 2π -periodic. Hence it has a Fourier series $b(\omega)$ =

$$
c_k = \frac{1}{2\pi} \int_0^{2\pi} b(\omega)e^{-ik\omega} d\omega = \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=-\infty}^{\infty} \hat{\varphi}(\omega + 2\pi n) \overline{\hat{\psi}(\omega + 2\pi n)} e^{-ik\omega} d\omega
$$

=
$$
\frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_0^{2\pi} \hat{\varphi}(\omega + 2\pi n) \overline{\hat{\psi}(\omega + 2\pi n)} e^{-ik\omega} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\varphi}(\omega) \overline{\hat{\psi}(\omega)} e^{-ik\omega} d\omega
$$

But by Parseval's theorem

$$
\frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\varphi}(\omega) \overline{\hat{\psi}(\omega)} e^{-ik\omega} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\varphi}(\omega) e^{-ik\omega} \overline{\hat{\psi}(\omega)} d\omega =
$$

$$
\int_{-\infty}^{\infty} \varphi(t - k) \psi(t) dt = 0
$$

where the final equality follows from the orthogonality of the subspaces V_0 and W_0 (Definitions 6.1 and 6.2). \Box

Theorem 6.4. Let φ be a scaling function and ψ the associated wavelet. Then

$$
(i) \langle h, S_{2n}g \rangle = 0 \text{ for all } n
$$

$$
(ii) \ \ m_0(\omega)\overline{m_1(\omega)} + m_0(\omega + \pi)\overline{m_1(\omega + \pi)} = 0
$$

Proof.

$$
\varphi(t) = 2 \sum_{k=-\infty}^{\infty} h_k \varphi(2t - k)
$$

$$
\psi(t - n) = 2 \sum_{k=-\infty}^{\infty} g_k \varphi(2t - 2n - k) = 2 \sum_{k=-\infty}^{\infty} g_{k-2n} \varphi(2t - k)
$$

Hence

$$
\langle \varphi(t), \psi(t-n) \rangle = 4 \langle \sum_{j=-\infty}^{\infty} h_j \varphi(2t-j), \sum_{k=-\infty}^{\infty} g_{k-2n} \varphi(2t-k) \rangle =
$$

$$
4 \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h_j g_{k-2n} \langle \varphi(2t-j), \varphi(2t-k) \rangle = 2 \sum_{k=-\infty}^{\infty} h_k g_{k-2n} = 2 \langle h, S_{2n} g \rangle
$$

The first result then follows from the orthogonality of subspaces V_0 and W_0 . To prove the second statement we use Lemmas 6.1 and 6.2, and the fact that $\hat{\psi}(2\omega) = m_1(\omega)\hat{\varphi}(\omega).$

$$
0 = b(2\omega) = \sum_{n=-\infty}^{\infty} \hat{\varphi}(2\omega + 2\pi n) \overline{\hat{\psi}(2\omega + 2\pi n)} = \sum_{n=-\infty}^{\infty} m_0(\omega + \pi n) \hat{\varphi}(\omega + \pi n) \overline{m_1(\omega + \pi n)} \hat{\varphi}(\omega + \pi n)
$$

\n
$$
= \sum_{n=-\infty}^{\infty} m_0(\omega + 2\pi n) \overline{m_1(\omega + 2\pi n)} |\hat{\varphi}(\omega + 2\pi n)|^2 +
$$

\n
$$
\sum_{n=-\infty}^{\infty} m_0(\omega + \pi + 2\pi n) \overline{m_1(\omega + \pi + 2\pi n)} |\hat{\varphi}(\omega + \pi + 2\pi n)|^2
$$

\n
$$
= m_0(\omega) \overline{m_1(\omega)} \sum_{n=-\infty}^{\infty} |\hat{\varphi}(\omega + 2\pi n)|^2 + m_0(\omega + \pi) \overline{m_1(\omega + \pi)} \sum_{n=-\infty}^{\infty} |\hat{\varphi}(\omega + \pi + 2\pi n)|^2
$$

\n
$$
= m_0(\omega) \overline{m_1(\omega)} a(\omega) + m_0(\omega + \pi) \overline{m_1(\omega + \pi)} a(\omega + \pi)
$$

\n
$$
= m_0(\omega) \overline{m_1(\omega)} + m_0(\omega + \pi) \overline{m_1(\omega + \pi)}
$$

We have seen that $\{S_{2n}h\}_{n\in\mathbb{Z}}$ and $\{S_{2n}g\}_{n\in\mathbb{Z}}$ are orthogonal sets in $l^2(\mathbb{Z})$. One can show that together they span the whole $l^2(\mathbb{Z})$. More precisely

Theorem 6.5. Let φ be a scaling function and ψ the associated wavelet. Then

$$
\{S_{2n}h\}_{n\in\mathbb{Z}}\cup\{S_{2n}g\}_{n\in\mathbb{Z}}
$$

is an orthognal basis in $l^2(\mathbb{Z})$.

It remains to find filters/transfer functions which satisfy the conditions which we have obtained. The first step is: given h and m_0 , what are the corresponding g and m_1 . Now it turns out that there is a canonical choice:

$$
g_k = (-1)^k h_{1-k} \qquad m_1(\omega) = -e^{-i\omega} \overline{m_0(\omega + \pi)} \qquad (6.7)
$$

One can easily check that with this choice, the conditions of Theorem 6.4 are satisfied. In the following we will always suppose that h, g, m_0 and m_1 are related this way. Note in particular that this implies that

$$
|m_0(\omega)|^2 + |m_1(\omega)|^2 = 1
$$