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7 Multiresolution analysis (continued)

So to find suitable wavelets we have to first find a good h or equivalently m0 whose
characterizing properties are:

|m0(ω)|2 + |m0(ω + π)|2 = 1

〈h, S2nh〉 =

{
1/2 , n = 0

0 , n 6= 0

m0(0) =
∞∑

k=−∞

hk = 1

However, there are still two important practical points. Normally it is important that
the wavelet and the scaling function have some smoothness, for example we may require
that ϕ and ψ should be at least k + α –Lipschitz for some k and α. Also it is usually
important that the wavelet has some vanishing moments. Although these two things
are not directly related it turns out that requiring more vanishing moments tends to
make the wavelet more regular as well. So let us first recall that having n vanishing
moments means ∫ ∞

−∞
tkψ(t)dt = 0 0 ≤ k < n

In the Fourier domain this means that

ψ̂(k)(0) = 0 0 ≤ k < n

Now ψ̂(2ω) = m1(ω)ϕ̂(ω) so that

2ψ̂′(2ω) = m′1(ω)ϕ̂(ω) +m1(ω)ϕ̂′(ω)

which implies that 2ψ̂′(0) = m′1(0)ϕ̂(0) + m1(0)ϕ̂′(0) = m′1(0). But because m1(ω) =
−e−iωm0(ω + π) we get that m′1(0) = −m′0(π). In other words we get

ψ̂′(0) = 0 ⇔ m′0(π) = 0

Continuing by induction we get

Theorem 7.1. Suppose that

1. ψ ∈ Cn−1(R)

2. there exist C > 0 and ε > 0 such that

|ψ(t)| ≤ C

(1 + |t|)n+ε
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3. ψ(k) is bounded for 0 ≤ k < n

Then ψ has n vanishing moments if and only if

m
(k)
0 (π) = 0 0 ≤ k < n

In other words m0 has a zero of multiplicity n at π. But then we can write

m0(ω) =
(1 + e−iω

2

)n
m̃(ω)

m̃(ω) =
∞∑

k=−∞

ake
−ikω

(7.1)

Clearly if m0 is of this form, then it satisfies the condition in the above Theorem.
Vanishing moments have another interesting consequence: one may represent polyno-
mials exactly, up to certain degree. This is a bit surprising because scaling functions can
be rather irregular, so one doesn’t really expect that it is possible to get polynomials
just by taking certain linear combinaisons.

Theorem 7.2. Suppose that ψ has n vanishing moments and let ϕ be the corresponding
scaling function. Then

∞∑
k=−∞

kmϕ(t− k)

is a polynomial of degree m for 0 ≤ m < n.

The exact determination of regularity of ϕ and ψ is very complicated. However, the
following result gives a reasonable estimate.

Theorem 7.3. Suppose that m0 is given by (7.1) and let b = maxω |m̃(ω)|. Then ϕ
and ψ ∈ Ck+α(R) if

k + α < n− log2 b− 1/2

Usually in practise b doesn’t grow so fast so that increasing n indeed tends to increase
the regularity of wavelets and scaling functions.

7.1 Sufficient conditions

Up to now we have supposed that we have ϕ which satisfies the conditions of MRA,
and we have derived some consequences of this. However, if we reverse the process,
namely:

• choose n, and let m0 be as in (7.1)

• find the coefficients ak such that |m0(ω)|2 + |m0(ω + π)|2 = 1

• define ϕ̂(ω) =
∏∞

j=1 m0(2−jω)

• compute ϕ by taking the inverse Fourier transform of ϕ̂
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But does this in fact produce a MRA? In fact we must add two technical conditions.
Up to now we have assumed that m0 is continuous. In fact it must be a bit more regular
so that the infinite product converges nicely. So we require that m0 is α –Lipschitz for
some α > 0. In terms of h this is the same as requiring

∞∑
k=−∞

|k|α|hk| <∞

In practice this is not restrictive at all. For example if we have a filter with only finite
number of nonzero hk, then m0 is even infinitely differentiable, and the above sum has
only finite number of terms. The other condition is more mysterious: we require that
|m0(ω)| 6= 0 for |ω| ≤ π/2.

Theorem 7.4. Suppose that

(i) m0 ∈ Cα(R) for some α > 0

(ii) |m0(ω)|2 + |m0(ω + π)|2 = 1 and m0(0) = 1

(iii) |m0(ω)| 6= 0 for |ω| ≤ π/2

Define ϕ̂(ω) =
∏∞

j=1 m0(2−jω) and let ϕ be the inverse Fourier transform of ϕ̂. Then
ϕ defines a MRA.

7.2 Compact support

From practical point of view it would desirable to have ϕ and ψ with compact support,
and filters h and g with only finite number of nonzero terms. In other words h and g
should be FIR filters (finite impulse response). These two things are in fact equivalent.
The other implication is rather easy to see.

Lemma 7.1. Let ϕ have a compact support. Then h has only finite number of nonzero
terms.

Proof. Let supp(ϕ) ⊂ [−r, r]. By property (2) of MRA we have

1
2
ϕ(t/2) =

∞∑
k=−∞

hkϕ(t− k)

Taking inner product of both sides we obtain

1
2
〈ϕ(t/2), ϕ(t− n)〉 = 〈

∞∑
k=−∞

hkϕ(t− k), ϕ(t− n)〉 =
∞∑

k=−∞

hk〈ϕ(t− k), ϕ(t− n)〉 = hn

Now supp(ϕ(t − n)) ⊂ [−r + n, r + n] and supp(ϕ(t/2)) ⊂ [−2r, 2r]. Hence hn = 0 if
n < −3r or n > 3r because in that case

supp(ϕ(t− n)) ∩ supp(ϕ(t/2)) = ∅
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Now it turns out that the converse is also true. This is not at all obvious, and the
proof requires some rather advanced things and cannot be presented here. However,
the result is important.

Theorem 7.5. Let m0(ω) =
∑N2

k=N1
hke

−iωk, m0(0) = 1 and define ϕ̂(ω) =
∏∞

j=1 m0(2−jω).
Then

• supp(ϕ) ⊂ [N1, N2].

• if ψ is the associated wavelet defined in the standard way, then the length of
supp(ψ) is also N2 −N1.
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