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8 Signal analysis and reconstruction

8.1 Notation

Recall the projections

Pj : L2(R)→ Vj Pjf =
∞∑

k=−∞

〈f, ϕj,k〉ϕj,k =
∞∑

k=−∞

cj,kϕj,k

Qj : L2(R)→ Wj Qjf =
∞∑

k=−∞

〈f, ψj,k〉ψj,k =
∞∑

k=−∞

dj,kψj,k

(8.1)

Let us also define sequences

cj =
(
. . . , cj,−1, cj,0, cj,1, cj,2, . . .

)
dj =

(
. . . , dj,−1, dj,0, dj,1, dj,2, . . .

)
Also for any sequence x we define x̃ by x̃n = x−n.

Definition 8.1. If x is a sequence, the operators ↓2, downsampling, and ↑2, upsam-
pling, are defined by

y =(↓2)x ⇔ yn = x2n

y =(↑2)x ⇔ yn =

{
xk , n = 2k

0 , n = 2k + 1

Note that (↓ 2)(↑ 2)x = x for all x, but in general (↑ 2)(↓ 2)x 6= x. They are also
adjoints (or transposes) of each other.

Definition 8.2. Let H be a Hilbert space and A : H → H a linear operator. Operator
B is said to be adjoint of A if for all x, y ∈ H

〈Ax, y〉 = 〈x,By〉

The adjoint is of A is usually denoted by A∗.

Now upsampling and downsampling can be taken to be operators in l2(Z) and one can
easily check that

〈(↑2)x, y〉 = 〈x, (↓2)y〉
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8.2 Fast wavelet transform

Let us consider the decompositions

Vp = Vp−1 ⊕Wp−1 = · · · = Vm ⊕Wm ⊕Wm+1 ⊕ · · · ⊕Wp−1 (8.2)

Theorem 8.1. Let h and g be the lowpass and highpass filters associated to MRA and
let cj,k and dj,k be the coefficients of some signal f defined by the projections in (8.1).
Then

cj,k =
√

2
∞∑

n=−∞

hn−2kcj+1,n

dj,k =
√

2
∞∑

n=−∞

gn−2kcj+1,n

In vector notation we have

cj =
√

2 (↓2)
(
h̃ ∗ cj+1

)
dj =
√

2 (↓2)
(
g̃ ∗ cj+1

)
Proof. Since ϕj,k ∈ Vj ⊂ Vj+1 we can write

ϕj,k(t) =
∞∑

n=−∞

〈ϕj,k, ϕj+1,n〉ϕj+1,n(t)

But

〈ϕj,k, ϕj+1,n〉 =

∫ ∞
−∞

ϕj,k(t)ϕj+1,n(t)dt =
√

22j
∫ ∞
−∞

ϕ(2jt− k)ϕ(2j+1t− n)dt

By the change of variable s = 2j+1t− 2k, ds = 2j+1dt we get

〈ϕj,k, ϕj+1,n〉 = 1
2

∫ ∞
−∞

ϕ(s/2)ϕ(s+ 2k − n)ds =
√

2hn−2k

So we obtain

ϕj,k(t) =
√

2
∞∑

n=−∞

hn−2k ϕj+1,n(t)

Then taking the inner products on both sides gives

cj,k = 〈f, ϕj,k〉 =
√

2
∞∑

n=−∞

hn−2k 〈f, ϕj+1,n〉 =
√

2
∞∑

n=−∞

hn−2kcj+1,n

The proof of the formula for dj,k is entirely analogous. To get the vector formula we
note that

cjk = cj,k =
∞∑

n=−∞

hn−2kcj+1,n =
∞∑

n=−∞

h̃2k−ncj+1,n =
(
h̃ ∗ cj+1)2k
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With this Theorem we can compute recursively the wavelet coefficients, or in other
words we can go from left to right in the equation (8.2). This yields the following
diagram, which is sometimes called the wavelet tree.

Vp

!!DDDDDDDD
// Vp−1

  @@@@@@@@@
// · · ·

""EEEEEEEEEE // Vm+1

##GGGGGGGGG
// Vm

Wp−1 · · · Wm+1 Wm

This process is called the analysis of the signal because we hope that the computed
coefficients give the desired information about the signal.

Theorem 8.2. Let h and g be the lowpass and highpass filters associated to MRA and
let cj,k and dj,k be the coefficients of some signal f defined by the projections in (8.1).
Then

cj+1,k =
√

2
∞∑

n=−∞

hk−2ncj,k +
√

2
∞∑

n=−∞

gk−2ndj,k

In vector notation we have

cj+1 =
√

2 h ∗
(
(↑2)cj

)
+
√

2 g ∗
(
(↑2)dj

)
Proof. Now ϕj+1,k ∈ Vj+1 = Vj ⊕Wj so we can write

ϕj+1,k(t) =
∞∑

n=−∞

〈ϕj+1,k, ϕj,n〉ϕj,n(t) +
∞∑

n=−∞

〈ϕj+1,k, ψj,n〉ψj,n(t)

But in the previous proof we saw that 〈ϕj+1,k, ϕj,n〉 =
√

2hk−2n and 〈ϕj+1,k, ψj,n〉 =√
2gk−2n. Hence

cj+1,k =〈f, ϕj+1,k〉 =
√

2
∞∑

n=−∞

hk−2n 〈f, ϕj,n〉+
√

2
∞∑

n=−∞

gk−2n 〈f, ψj,n〉

=
√

2
∞∑

n=−∞

hk−2ncj,n +
√

2
∞∑

n=−∞

gk−2ndj,n

To get the vector formula we use

∞∑
n=−∞

hk−2ncj,n =
∞∑

n=−∞

hk−2n

(
(↑2)cj

)
2n

=
∞∑

n=−∞

hk−n
(
(↑2)cj

)
n

=
(
h ∗
(
(↑2)cj

))
k

This Theorem allows us to reverse the arrows in the wavelet tree, i.e. we can go also
from right to left in the equation (8.2).

Vm // Vm+1
// · · · // Vp−1

// Vp

Wm

;;wwwwwwwww
Wm+1

>>}}}}}}}}}}
· · ·

<<yyyyyyyyyy Wp−1

==zzzzzzzz
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This process is called synthesis or reconstruction of the signal.
It remains to see how to start the process, i.e. when we have chosen m and p, how do
we get cp in the first place? It turns out that this is really relatively easy if we have
sufficiently samples of the signal.
Let us start with simple

Lemma 8.1. Let αj(t) = 2jϕ(2jt) and suppose that supp(ϕ) ⊂ [−r, r]. Then

(i)
∫∞
−∞ αj(t)dt = 1 for all j

(ii) ||αj||1 = ||ϕ||1 for all j

(iii) supp(αj) ⊂ [−2−jr, 2−jr]

Proof. This is easy to verify.

Now the sequence of functions αj can be interpreted as Dirac’s δ in the following sense.

Lemma 8.2. Let f be continuous. Then

lim
j→∞

∫ ∞
−∞

f(t)αj(t)dt = f(0)

Proof. ∣∣ ∫ ∞
−∞

f(t)αj(t)dt− f(0)
∣∣ =

∣∣ ∫ ∞
−∞

(
f(t)− f(0)

)
αj(t)dt

∣∣ ≤∫ ∞
−∞

∣∣f(t)− f(0)
∣∣ |αj(t)|dt =

∫ 2−jr

−2−jr

∣∣f(t)− f(0)
∣∣ |αj(t)|dt ≤

max
|t|≤2−jr

∣∣f(t)− f(0)
∣∣ ∫ 2−jr

−2−jr

|αj(t)|dt = max
|t|≤2−jr

∣∣f(t)− f(0)
∣∣||ϕ||1

Because f is continuous, the final expression tends to zero as j tends to infinity.

This leads immediately to

Corollary 8.1. Let f be continuous. Then

lim
j→∞

∫ ∞
−∞

f(t± s)αj(s)ds = f(t)

So let us be given a signal f ∈ L2(R). In practice we only have samples fk = f(k∆t)
where ∆t is the sampling period. So the problem is:

given samples fk, how to compute or estimate cp ?
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So let us try to compute cp.

cpk =〈f, ϕp,k〉 =

∫ ∞
−∞

f(t)ϕp,k(t)dt = 2p/2
∫ ∞
−∞

f(t)ϕ(2pt− k)dt

=2p/2
∫ ∞
−∞

f(s+ 2−pk)ϕ(2ps)ds = 2−p/2
∫ ∞
−∞

f(s+ 2−pk)αp(s)ds

So putting a = 2−pk and using Corollary 8.1 we get

2p/2cp2pa =

∫ ∞
−∞

f(s+ a)αp(s)ds→ f(a)

when p→∞. In other words
f(2−pk) ≈ 2−p/2cpk

when p is sufficiently “big”. So in practice one scales the time appropriately and one
chooses ∆t = 2−p for some p. Then given the samples fk one simply puts cpk := 2p/2fk.
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